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Abstract

We study the e¤ects that school choice mechanisms and school
priorities have on the degree of sorting of students across schools and
neighborhoods, when school quality is endogenously determined by
the peer group. Using a model with income or ability heterogene-
ity, we compare the popular Deferred Acceptance (DA) and Boston
(BM) mechanisms under several scenarios. With residential priori-
ties, students and their households fully segregate into quality-ranked
schools and neighborhoods under both mechanisms. With no residen-
tial priorities and a bad public school, DA does not generate sorting in
general, while BM does so between a priori good public schools. With
private schools, the best public school becomes more elitist under BM.
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1 Introduction

School choice is one of the most hotly debated and rapidly expanding edu-
cation policies.1 Advocates (e.g. Friedman, 1955; Hoxby, 2003) claim that
school choice policies could allow equal access to higher quality schooling
for all, and so be a tide that lifts all boats. On the one hand, it is argued,
choice introduces competition into the education system, pushing schools to
be more productive.2 On the other hand, a­ uent families always had choice,
as they could a¤ord private schooling or housing in expensive areas, and so
introducing choice should improve equity by allowing poor parents to choose
as well. Critics (e.g. Smith and Meier, 1995; Musset, 2012; OECD, 2012)
retort that school choice may instead exacerbate educational inequality and
harm vulnerable students by increasing socioeconomic and ability segrega-
tion across schools and leaving them behind in lower quality schools. The
main reasons are that more educated parents make better informed choices,
and that low income households have their e¤ective choice sets restricted as
they cannot a¤ord transport and other direct or indirect monetary costs.
This paper contributes to the debate by examining whether the applica-

tion of two widely used school choice mechanisms, Deferred Acceptance (DA)
and the Boston mechanism (BM),3 can result in socioeconomic sorting.4 So
as to stack the deck against the emergence of segregation, we study a model
without transport costs and where all parents are rational and posses the
same information. Even so, our results prove that DA and BM may well
generate socioeconomic sorting across schools and residential areas and that,
depending on the details, the strategic di¤erences between them sometimes
lead to sharp di¤erences in the distribution of students across schools.
Our contribution builds a bridge between two important and largely dis-

1For instance, more than two thirds of OECD countries have expanded school choice
opportunities in the last decades (Musset, 2012).

2That claim is not free of controversy and the question has not yet been settled in the
literature. Several theoretical contributions explain why school competition may harm
school productivity in the presence of reputation e¤ects or asymmetric information (De
Fraja and Landeras, 2004; MacMillan, 2004, MacLeod and Urquiola, 2008). On the other
hand, the empirical evidence is at best inconclusive (Hoxby, 2000, 2003, 2007; Rothstein,
2007; Gibbons et al., 2010, OECD, 2014).

3Most of the mechanism design literature on school choice has debated the properties
of BM and DA. BM is used in places such as Denver or Barcelona, while DA is used for
example in Boston or New York City.

4We use the terms sorting and segregation interchangeably.
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connected literatures in the economics of education. A �rst strand, inspired
by Tiebout (1956), treats schooling as a local public good, assuming that
children are assigned to their local school.5 The choice of where to live em-
beds the choice of school and, since better-o¤ households are willing to pay
more for school quality, socioeconomic segregation across communities and
their schools ensues.6 In that setting, frictionless school choice (i.e. with
neither transport costs nor capacity constraints) indeed prevents segregation
in the public sector (Epple and Romano, 1998, 2003): schools must admit
any applicant and thus must be of homogenous quality in equilibrium, since
otherwise those assigned to a bad school could be better-o¤ by applying to a
better one.7 Epple and Romano (2003) conjecture that their results would ex-
tend to a model where public schools had limited capacity and overdemands
were resolved through lotteries, but do not provide relevant details of the
school choice mechanism used (e.g. what happens with children excluded
from their �rst choice). Those details and the properties of the resulting
match of children to schools are precisely the focus of the second literature
this paper belongs to.8

Started by Abdulkadiroglu and Sönmez (2003), that literature reveals the
importance of the rules applied to resolve overdemands when limited school

5Tiebout (1956) presented his seminal contribution as a response to Musgrave�s (1939)
and Samuelson�s (1954) result that �no "market-type" solution exists to determine the level
of expenditures on public goods�. He suggested that a solution to the preference revelation
(or free-rider) problem could exist for local public goods �i.e. those only available to the
residents of a local community and so excludable. Tiebout�s path-breaking basic idea is
that households living in metropolitan areas where di¤erent communities o¤er di¤erent
combinations of local public good provision and taxation, "shop" for local public goods
by choosing where to live and thus reveal their preferences.

6In early contributions, school quality di¤erences emerge and sustain segregation be-
cause wealthier communities, with a larger tax base, vote for larger levels of public spending
in education (e.g. Epple et al., 1984). In more recent ones, the peer group e¤ect explains
the emergence of such di¤erences across the schools of a single district (e.g. Bénabou,
1996; Epple and Romano, 2003; De Fraja and Martinez-Mora, 2014).

7Epple and Romano (2003) also study the e¤ects of transport costs and �nd that full
residential segregation and partial school segregation by income would emerge in equilib-
rium.

8Important contributions to this literature include Bénabou (1993), which reveals a
way whereby socioeconomic segregation may create poverty traps and ghettos; Durlauf
(1996), which explains how socioeconomic segregation can perpetuate income inequality
across generations; and Nechyba (2000), who shows how the existence of private schools
may reduce socioeconomic segregation by severing the link between a household place of
residence and the school the child attends.
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capacities preclude the immediate satisfaction of parents��rst choices. It
formally analyzes the game generated by a centralized system where families
submit a ranking of schools and a set of rules determines who gets accepted
in an overdemanded school and what options are left for rejected applicants.
These rules de�ne the so-called school choice mechanisms, which often include
priorities for applicants living in the neighborhood of the school or having
a sibling in the school. Abdulkadiroglu and Sönmez (2003), and a fruitful
literature derived from it, de�ne several properties that these mechanisms
should satisfy and establish a tradeo¤ between e¢ ciency (satisfying parents
preferences) and stability (respecting priorities).9

We propose a uni�ed theoretical framework that merges these two liter-
atures. It is, to the best of our knowledge, the �rst one to embed the school
choice problem in a multi-community model of local public good provision.
Our framework allows us to gain a better understanding of the impact school
choice design has on socioeconomic sorting into schools and neighborhoods.
Our base model represents a city divided into three districts with a contin-

uum of households that di¤er in a unidimensional type, the minimal structure
we need to present our results.10 Every household has a parent and a school-
aged child. We will interpret household type either as parental income or the
child�s ability, depending of the form of the utility function.11 Parents �rst
decide which district to live in and then participate in a school choice mecha-
nism that assigns their child to a public school. Finally, if private schools are
available, they choose whether to keep the child in the public system or to
pay for private schooling. School quality is a function of the characteristics
of the student body, summarized by the average peer type.12 Household�s

9This tradeo¤ has been argued to be small �Chen and Sönmez (2006) question its
relevance through lab experiments.
10This is only for mathematical simplicity. We show in the appendix that the main ideas

and results of the paper extend naturally to more general speci�cations.
11The robustness analysis presented in the Appendix proves that our results hold with a

di¤erent characterization of exogenous quality di¤erences and with an arbitrary number of
districts and schools. Moreover, it contains an extension of the model in which households
di¤er along two dimensions: parental income and child ability. Qualitative results do not
change.
12In line with Epple and Romano (2011), we de�ne peer e¤ects as any in�uence that a

student has in the learning of her class or school mates. There is a large and growing body
of literature studying the empirical relevance of peer e¤ects and the mechanisms through
which they a¤ect the educational process. A consensus exists that they matter, and that
a �better�peer group enhances performance (Epple and Romano, 2011; Sacerdote, 2011).
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utility depends on current consumption and the future human capital of the
child. Overall, our approach is the �rst to endogenize both priorities, by
allowing families to choose where to live, and preferences, by making school
quality a function of the peer quality of the school�s student population.13

A �rst important observation of our analysis is that residential priori-
ties (or any that parents can somehow pay for) prevail over the mechanism
itself when schools have priorities for local applicants, perfect income segre-
gation across districts and schools characterizes equilibrium, as if the place
of residence directly determined where children go to school. The take-home
message is that policy-makers should not expect to reduce school segregation
by implementing choice and having tradable priorities break ties, as it is the
case in most countries with active school choice policies.
When schools have no priorities, the mechanisms do not induce sorting

into neighborhoods, but may lead to starkly di¤erent distributions of students
across schools. If there are no bad schools (loosely de�ned as schools which
parents would like to avoid ex-ante), no segregation across public schools will
emerge. However, if bad schools exist or parents think they do (e.g. for being
placed in a ghetto or at the bottom of the local league table), BM can induce
ability segregation across good public schools (hence "elitizing" one of the
good schools) if the child�s ability and school quality are complements in the
production of human capital. In sharp contrast, DA induces homogeneous
quality across public schools and no segregation.
We next show that the presence of private schools has a profound e¤ect on

the allocation of children across public schools. In this scenario, segregation
by ability is larger in the BM, reinforcing the �elitization" of the best public
schools where top types obtain easier access. Furthermore, the BM can also
have an equilibrium with income segregation across public schools. Therefore,
if the BM is used, the existence of a bad school can trigger the same cream-
skimming e¤ect previously found for private schools (see Epple and Romano,
1998 and Epple et al., 2004) within the public sector. On the other hand,
in DA, exogenous quality di¤erences among public schools are exacerbated
by the peer e¤ect, since private schools attract more good students from
schools with lower exogenous quality. Hence, the only way to fully avoid
the emergence of segregation in the system with perfect information and no

13On-going research by Estelle Cantillon (2014) studies how group admission quotas can
avoid the emergence of segregation when preferences are endogenously determined by peer
quality.
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transport costs is to have DA without either outside options or residence
priorities.14

To sum up, our results suggest that school choice must be carefully de-
signed if socioeconomic segregation is to be avoided. Its essence is to in-
troduce and promote competition between schools (e.g. through the pub-
lication of league tables), while ghetto schools are usually present, even in
OECD countries. Recent work by Calsamiglia et al. (2014) and Calsamiglia
and Güell (2014) provides empirical evidence showing that priorities play
a large role in the �nal allocation of students to schools when residential
priorities exist.15 Although they do not consider peer e¤ects or residential
choices explicitly, the sorting e¤ects that we identify in BM seem empirically
plausible in the light of their results. Similarly, these papers �nd that a
substantial fraction of families taking risks in the city of Barcelona opt for
a private school if they do not get the desired school, empirically validating
the channel that private schools play when BM is used.
Section 2 presents the basic elements of the model, the main assumptions

and the equilibrium notions, while section 3 provides a detailed explanation
of both mechanisms. Section 4 starts the analysis in a setup where schools
have priorities for students living in the neighborhood. We then, in Section 5,
study scenarios where schools have no priorities: we focus on the case without
private schools in 5.1, and then extend the analysis by introducing private
alternatives in 5.2. The �nal section concludes the paper while discussing
e¢ ciency considerations. All the proofs as well as the robustness analysis
are gathered in the Appendix.

2 The model

The model represents a city divided into three equally sized school districts
with �xed boundaries. Districts and their schools are indexed with j =
1; 2; 3. Each district has a school that o¤ers tuition-free public education. A
population of households with mass normalized to 1 lives in the city. Every
household consists of a parent, who takes decisions, and a school-aged child.

14This is the public sector counterpart to the vouchers system proposed by Epple and
Romano (2008) to avoid segregation with private schools. In their proposal, private schools
can select students and optimal vouchers compensate for externalities so that schools are
indi¤erent among all students: equal quality ensues.
15That is the case in most OECD countries (OECD, 2012).
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Households (sometimes called agents, or students) di¤er continuously along
a single dimension. Household type is denoted with t 2 D �

�
t; t
�
, and is

distributed in the population according to a continuous and strictly increasing
distribution function � (t) 2 [t; �t]. We denote with t(�) the � quantile of �,
i.e. �(t(�)) = �. We interpret types either as household income (or human
capital) or as the child�s ability (or school readiness), depending on the form
of the household utility function.

Housing market. Districts have a �xed supply of homogeneous houses
owned by absentee landlords. Households must rent a house to live in. The
rental price of a house in district j is denoted by rj. In order to avoid an unin-
formative multiplicity of equilibria, we anchor housing prices by normalizing
the lowest rental price to zero.

Households have identical preferences over combinations of (current) con-
sumption of a private good x �the numeraire�and the child�s (future) hu-
man capital h.16 A separable utility function represents these preferences:
U(x; h) = u(x) + h.

The amount of human capital accumulated by the child at the end of
the education process is a function of the quality of schooling received q
and of the household type t: a child from a t�type household who attends
school j derives human capital h (qj; t). u and h are twice di¤erentiable17

and increasing. A parent of type t who pays rent r for the house consumes
x = t� r; hence the indirect utility function is V (t; q; r) = u(t� r) + h(q; t).

Two sources of variation in the demand for school quality may trigger the
emergence of segregation in our model: on the one hand, if school quality
and type are complements in the production of human capital, higher types
will bene�t more from school quality; on the other, if the marginal utility
of income is decreasing, higher types will be willing to pay more for school
quality.18 In order to identify the relevant sources of segregation in each sce-
nario in a transparent way, we will be using one of the following assumptions
as we go along:

16Houses are homogeneous and so excluded from the preference relation.
17Di¤erentiability is actually not necessary to obtain our results: we just require U to

be continuous and monotone.
18Formally, agents�demand for school quality increases with type if Vq=Vt does so, which

requires either hqt > 0 or u00 < 0.
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Assumption 1 (A1) Marginal utility of income is constant: u00 = 0; school
quality and type are complements in the production of human capital: hqt > 0.
Moreover, the lowest type t has no ability to bene�t from better school quality,
so that h(�; t) is a (weakly) positive constant function.

Assumption 2 (A2) Marginal utility of income is decreasing: u00 < 0 and
u(0) = �1; school quality and type are independent in the production of
human capital: hqt = 0.

Under assumption A1, our model is best interpreted as one where agents
di¤er by ability, while under assumption A2 our type can be best thought of
as parental income or human capital.

School quality depends on the distribution of types at the school.19 To
simplify the exposition, we follow the bulk of the theoretical literature and
assume that school quality is given by the average type of the peer group
(e.g. de Bartolomé, 1990; Epple and Romano 1998; De Fraja and Martínez-
Mora, 2014)20 and so, denoting with �j the distribution of students�types
conditional on being assigned to school j, we have:21

qj = E�j t:
19We do not contend that other inputs such as spending per pupil and teacher quality

are important in the education production process. However, ours is a model of interaction
between schools ascribed to the same educational authority. Therefore, we consider that
other inputs are equally distributed across schools and assume them away.
20This means we assume school quality increases with the average income or human

capital of parents when we interpret type as income. This is in line with results in De
Fraja et al. (2010). Among other results, they obtain evidence that: (i) the e¤ort of parents
and children at school are strategic complements; (ii) parents with more education, higher
income and higher socioeconomic status exert more e¤ort in their children�s education (so
that the children work harder at school), while those that endure �nancial hardship exert
less e¤ort; (iii) schools exert greater e¤ort when they have a larger proportion of students
from better-o¤ households; and (iv) e¤ort strongly improves school achievement.
21Our results extend to other, more general, formulations of the peer group e¤ect. For

example, they hold in a setting where a smaller proportion of children with ability below a
certain threshold and a larger proportion of children with ability above a larger threshold
enhance performance, as in Summers and Wolfe (1977). Qualitative results extend as well
to a setting where quality is a¤ected by the degree of heterogeneity in abilities at the
school, as in Bénabou (1996a).
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When we study the impact of failing schools, we will also assume that there
is an observably bad school which WLOG we label school 3.22 We model this
by assuming that being assigned to school 3 induces a �xed reduction of
� > 0 units in the future human capital of the child. We sometimes call this
the ghetto e¤ect.23

School capacity is assumed to be identical to the number of children
residing in the district, and so it is equal to 1

3
for all schools.

We next provide a few formal de�nitions before discussing the timing of
the model and the notions of equilibrium we use. Let H : D ! �(f1; 2; 3g)
be the function representing the (possibly random) choice H(t) of residential
district of each type t, � denote the set of all measurable housing choice
pro�les H that clear the housing market (i.e. such that H is feasible). Let
R : D��! P(fs1; s2; s3g) be the function representing the ranking strategy
R(t;H) of household t, given the housing choice pro�le H 2 �;24 P denotes
the set of all possible rankings (permutations) among the three schools.

Timing of the model

1. Households �rst choose which district to live in, H(t) 2 �(f1; 2; 3g),
and rent a house there.

2. The school-choice mechanism M is then applied: households submit a
ranking (i.e. a linear ordering) of the three schools, R 2 P(fs1; s2; s3g),
and the rules speci�ed inM select an assignment of children to schools.
The allocation of children to schools in turn determines the peer groups
and the quality of schools. Finally, payo¤s are realized.

3. Finally, if a private school is available, parents choose between the
public school the child is assigned to and the private school.

22We argue that the existence of public schools with a bad reputation and which parents
wish to avoid is prevalent across the world. Most cities have deprived areas or slums where
the poor population concentrates and where, arguably, schools have a self-ful�lling bad
reputation, at least, among non-residents. This is further facilitated in countries that
publish school league tables.
23We consider an alternative modelling of such bad school in the appendix. In the alter-

native modelling, school 3 quality is discounted by a factor � < 1. Results are qualitatively
identical.
24We focus on pure ranking strategies since Mas-Colell (1984) guarantees the existence

of a Nash equilibrium in pure strategies at this stage of the game for a continuum of
households.
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Equilibrium concepts

An equilibrium given a mechanismM is a tuple of beliefs about qualities
(q̂1; q̂2; q̂3), housing rents (r1; r2; r3), a housing choice pro�le H� 2 � and a
ranking strategy pro�le R�(t;H) for each t 2 D and H 2 � such that

1. Rational choices: Given the beliefs (q̂1; q̂2; q̂3); no household can in-
crease utility by changing their choice of residence or their ranking of
schools.

2. Consistent beliefs: Given the assignment provided byM , induced qual-
ities coincide with the believed qualities: q̂j = qj8j.

3. Housing markets clearance: the demand and supply of houses balances
in the three districts.

We de�ne a sequential equilibrium given a mechanismM as an equilib-
rium such that there exists a sequence of beliefs (qn1 ; q

n
2 ; q

n
3 )n2N ! (q1; q2; q3)

satisfying qni =q
n
j 6= qi=qj for all i; j 2 f1; 2; 3g and n 2 N;25 a housing choice

pro�le sequence Hn(t) and a sequence of ranking strategy pro�les Rn(t;H)
such that

1. For each type t, the pair (Hn(t), Rn(t;H)) is best responding to R�

and H� given (qn1 ; q
n
2 ; q

n
3 ) and (r1; r2; r3)

2. Given the assignment produced by M , (Hn, Rn) ! (H�, R�) as n !
1.

De�nitions of sorting. Our de�nitions of sorting are based on compar-
isons of the ex-post distribution of types between pairs of schools and neigh-
borhoods. We say that there is full sorting between schools i and j if
sup(supp(�j)) � inf(supp(�i)). That is, the maximum type assigned to
school j lies weakly below the minimum type assigned to i. There is partial
sorting between schools i and j if �iFOSD�j, implying qi > qj.26 There

25We tremble the ratio between qualities instead of the qualities themselves because
we want each pairwise school comparison in the sequence to di¤er from the equilibrium
pairwise comparison.
26Other forms of sorting could also be explored. For instance, sorting coming from

second-order stochastic dominance. In this paper, however, our results concern the kinds
of sorting de�ned in the main text and so we do not provide other de�nitions of sorting.
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is no sorting between schools i and j if �i = �j. Analogous de�nitions of
sorting into residential areas establish whether the neighborhoods of the city
display full, partial or no socioeconomic sorting at all.

3 The assignment mechanisms

Before we proceed with the analysis, we brie�y explain how the two assign-
ment mechanisms we study, BM and DA, assign students to schools. In both
mechanisms, parents are requested to report a complete ranking of the avail-
able schools to the school authority. Both mechanisms use an algorithm that
assign children to schools round by round. In the �rst round, each student is
considered for the school her parents ranked �rst. If the number of students
considered for a school exceed the capacity of that school, some students will
need to be rejected, following the school priorities and a tie-breaking lottery
when necessary. Each student rejected in some round goes to the next round
where she is considered for the highest-ranked school that has not rejected
her yet. The di¤erence between BM and DA stems from how these mecha-
nisms treat the students that are not rejected (i.e. the accepted students).
In BM, every accepted student keeps her slot at the school for which she was
considered and both the student and the slot are removed from the assign-
ment algorithm (de�nite acceptance). In DA, an accepted student only gains
the right to be reconsidered for the same school in the next round, meaning
that rejection in posterior rounds is possible (deferred acceptance indeed).
While the way BM proceeds is easier to understand for parents, DA has

the advantage of strategy-proofness (as shown by Roth, 1985, Theorem 5).
An assignment mechanism is strategy-proof if providing truthful informa-
tion about one�s own preferences when asked constitutes a weakly dominant
strategy (i.e. it is always a best response to any pro�le of the other agents�
strategies). In school choice problems, this property provides a valuable sim-
pli�cation of the strategy choice parents face, since they cannot do better
than report their true ordinal preferences. This may not be the case in BM.
Given that slots are de�nitely given round by round, the opportunity cost
of truthfully reporting preferences is the reduction of available slots in not-
so-preferred schools in further rounds. Thus, each parent needs to balance
her preferences with her chances. Consequently, she may rank a moderately
good school with high acceptance chances in �rst position, and so on.
In an environment with peer e¤ects, parents� preferences are also af-
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fected by the average school type, an endogenous outcome. Thus, strategy-
proofness is not a guarantee of strategic simplicity, since each parent still
needs to take other parents�strategies into account in order to construct her
own preferences. The value of strategy-proofness is then diminished. On the
other hand, BM, precisely because it is not strategy-proof, manages more
information about parents�preference intensities than DA does. In fact, par-
ents with the same ordinal preferences may report di¤erent rankings if their
preference intensities are di¤erent. This feature yields some e¢ ciency proper-
ties for BM that DA usually does not attain (Miralles, 2008; Abdulkadiroglu,
Che and Yasuda, 2011). This paper studies and compares the degree of stu-
dents and households sorting into schools and residential areas that DA and
BM may generate.

4 School choice with residential priorities

In this section we consider a setting where residents of a district have pri-
ority over non-residents when competing for slots in the local public school.
An important result is that the school choice mechanism plays no role in
this context. The choice of school is e¤ectively embedded in the choice of
neighborhood and both mechanisms lead to exactly the same outcome with
perfect sorting across schools and neighborhoods.
We solve the game by backward induction. An important observation

is in Lemma 1, which shows that the two mechanisms result in all children
attending their own neighborhood school; then, proposition 1 proves that
perfect sorting across neighborhoods and their schools emerges in the unique
equilibrium with di¤erentiated qualities.

Lemma 1 Consider any house choice pro�le H(t) 2 � such that districts
di¤er in their demographic composition. Then both BM and DA lead to the
same and unique equilibrium of the assignment stage in which students with
types H(t) = j attend the school of district j.

Proposition 1 Suppose A1 or A2 hold. Then if schools have residential
priorities, both DA and BM result in a unique equilibrium with q�1 > q

�
2 > q

�
3

such that H�(t) = 1 if t 2 (t(2=3); �t]; H
�(t) = 2 if t 2 [t(1=3); t(2=3)] and

H�(t) = 3 if [0; t(1=3)). Equilibrium rents satisfy r3 = 0 < r2 < r1. There
is full sorting of households between all pairs of schools and neighborhoods.
This equilibrium is sequential.
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The proof is straightforward and thus we omit it. Simply note that, under
A1 or A2, the willingness to pay for school quality is increasing in t, either
because higher types bene�t more from school quality (A1), or because they
have a smaller marginal utility of income (A2). It is usual in Tiebout-type
models to also have symmetric equilibria where all schools and residential
areas, as well as house prices, are identical. Such equilibria are however typ-
ically unstable. The next questions we ask are therefore whether our model
has an equilibrium without sorting when schools have residential priorities
and whether it is sequential.

Remark 1 There is an equilibrium where q1 = q2 = q3 = E (t). Types
evenly randomize between renting at each district, and so r1 = r2 = r3 = 0;
at the assignment stage of the game, all households rank their local school
�rst. However, this equilibrium is not sequential. Consider any sequence of
beliefs summarized by (qn1 ; q

n
2 ; q

n
3 )n=1;2::: ! (q1; q2; q3) such that qn1 6= qn2 6= qn3 .

For each n, housing demand will be concentrated on the district whose school
has higher quality so that housing demand does not converge to the even
randomization between districts.

The emergence of full residential and school segregation when schools have
residential priorities is a prediction in line with Bénabou (1996) and Epple
and Romano (2003). It is important to point out that this is not a phenom-
enon arising only under the existence of residential priorities. Anything that
can generate a monetary market for priorities readily does so.

5 School choice with no priorities

In the rest of the analysis, we consider setups where the place of residence
does not carry any priority in the school assignment procedure.27 An imme-
diate implication for both DA and BM is that the housing market does not
play any role in those setups.28

Lemma 2 Suppose there are no priorities. Then, equilibrium in the housing
market has r1 = r2 = r3 = 0 and is compatible with any allocation of agents to

27The results exposed in this section could be immediately generalized to the case of
having an arbitrary number of schools.
28Note that for that result to be true, it is essential that no additional elements (e.g.

transport costs) are included.
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districts that clears the housing markets; therefore no residential segregation
emerges.

We omit the easy proof but note that for lemma 2 and the following
proposition to hold it is also essential that no transport costs are included.
The next result proves that with ex-ante symmetric schools and without
priorities neither BM nor DA engender any socioeconomic sorting.

Proposition 2 Suppose there are no priorities and that public schools are
ex-ante identical. Then, there is no equilibrium in DA or BM with di¤eren-
tiated school qualities (i.e. such that for some pair of schools i and j we have
qi 6= qj).

Instead, equilibrium in both cases has homogenous schools.

Remark 2 Suppose there are no priorities and that schools are ex-ante iden-
tical. Then, there is an equilibrium in DA and BM without school sort-
ing: Indeed, if agents believe q1 = q2 = q3, they all may play the same
ranking strategy, say putting school 1 �rst, school 2 second and school 3
third. Consequently, we would have q1 = q2 = q3 ex post. Moreover,
this equilibrium is sequential. For DA one can take any sequence of beliefs
(qn1 ; q

n
2 ; q

n
3 )n=1;2::: ! (q1; q2; q3) with qn1 > q

n
2 > q

n
3 such that the best response

pro�le always consists of everyone putting school 1 �rst and putting school 2
second. For BM, it is key that qn2 and q

n
3 converge to equality much faster than

qn1 and q
n
2 do. The risk of applying for school 1, which is going to be overde-

manded, in �rst place, instead of applying for the safer option (school 2) is
the risk of ending up in school 3 with higher probability. Given the converge
speeds, this risk is relatively negligible as compared to the premium between
the best school and the second-best school. Asymptotically almost every type
puts school 1 in the �rst position of submitted ranking (and school 2 in second
position - school 3 is the worst school and ranking it other than last is part
of a dominated strategy). Consequently (qn1 ; q

n
2 ; q

n
3 )n=1;2::: ! (q1; q2; q3).

5.1 School Choice with failing schools

In this subsection, we introduce some ex-ante heterogeneity in schools. In
particular, we assume that one of the schools is of lower quality than the rest
for some exogenous reason (e.g. for being located in a bad neighborhood),
independently of the distribution of children across schools. We refer to it as
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the ghetto school29 and assume WLOG that it is school 3. Formally, human
capital if school 3 is attended is h(q3; t)��, where � is the cost, in terms of
future human capital, of attending the ghetto school. When we study the BM
we will assume � > �� � h(qmax; �t)� h(qmin; �t), where qmin � E(t

��t < t(1=3)�
(the minimum possible school quality) and qmax � E(t

��t > t(2=3)� (the maxi-
mum school quality that can be attained in equilibrium). That is, the ghetto
e¤ect dominates potential quality di¤erences due to peer e¤ects, implying
that school 3 is always last in households�preferences.
With ex-ante heterogeneity in the quality of schools, the strategic di¤er-

ences between the two mechanisms come into play. We �nd that, even if
schools have no priorities, the existence of a failing school may well generate
school sorting in the BM, but not in DA.30

Proposition 3
a) Suppose A1 holds. Then, for any � > ��, there is an equilibrium in BM
with neither priorities nor private schools with a strategy pro�le characterized
by a threshold ~t 2 (t; t(1=2)) such that all types above the threshold rank school
1 �rst and all types below it rank school 2 �rst. School 3 is ranked last by every
type. If �(~t) � 1=3 this equilibrium brings full segregation between schools
1 and 2. Segregation is partial if �(~t) < 1=3. Moreover, this equilibrium
is sequential. If � is high enough, this sequential equilibrium is unique and
entails full sorting.31

b) For any � > 0, and under A1, there is a sequential equilibrium under the
DA mechanism that displays no sorting and has qualities q1 = q2 = q3.

In the BM, parents need to think strategically: since assignments are
�nal in each round, ranking a high quality and overdemanded school �rst
increases the chances of not getting a slot in the �rst round, and reduces
the probability of being admitted in a not-so-preferred, but still acceptable,
school in further rounds. Therefore, truth-telling has an opportunity cost:
the higher risk of having their child assigned to the ghetto school. Parents
must balance their preferences with their chances.

29However, the interpretation is broader: we only need a school that all parents wish to
avoid, for instance because it is placed at the bottom of a school league table.
30Note that, as in the previous section, equilibrium in the housing market does not

display any kind of sorting across districts, that is, the rent is zero in every district (lemma
2).
31The same result can be shown even for � > h(E(t

��t > t(1=2)� ; �t)� h(qmin; �t).
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Under A1, lower types bene�t from (and so value) school quality less than
higher types. In an equilibrium with segregation, low type parents misreport
their preferences (ranking school 2 �rst) in order to reduce the chances of
having their child exposed to the ghetto e¤ect. Parents of children of higher
ability prefer to take the risk and rank the best school �rst. Hence, the
existence of a bad school (school 3) generates sorting between other ex-ante
identical schools (schools 1 and 2).32 Note that diminishing marginal utility
of income (A2) is neither su¢ cient nor necessary for a segregation equilibrium
to exist in BM in this scenario, since public schools are free and there are no
priorities that parents can pay for.
Deferred Acceptance does not create strategic di¤erences between those

who value peer quality more and those who value it less. Because there are
no gains to be made by a household who misreports their preferences, all
parents submit the same true ranking of schools and have the same proba-
bility of being assigned to each school. Hence no di¤erences emerge in the
demographic composition of schools.

Remark 3 Interestingly, in a segregation equilibrium in BM, the bad school
has better ex-post peer quality than the second best public school (�3FOSD�2),
which partially compensates the ghetto e¤ect. Moreover, the ex-post peer qual-
ity of school 3 under BM exceeds Et, the ex-post quality of schools under DA.
Both results easily fade away if private schools are available (see below).

5.2 School choice with failing and private schools

This subsection introduces private schools into our base model to investi-
gate the way outside options a¤ect the behavior of parents and the resulting
allocation of children across public schools. Outside options are typically
available in school markets. However, to the best of our knowledge, we are

32The BM also has an equilibrium with no school sorting, just as in DA, but this
equilibrium is not sequential. If all agents believe that in equilibrium school qualities are
going to be identical, there will be an equilibrium in which agents choose their strategies
(say, strategy 1 with probability 1/2 and strategy 2 with probability 1/2) in a way that
the average quality among the �nally assigned students remain equal between schools 1
and 2 ex post (q1 = q2 = Et). However, consider any sequence of beliefs summarized by
(qn1 ; q

n
2 )n=1;2::: ! (Et;Et) such that qn1 6= qn2 . For each n, the pro�le of best responses can

be characterized by a threshold t̂n separating types who play strategy 1 from types who
play strategy 2. Then the equilibrium with mixed ranking strategies best does not arise
as we approach the limit of that sequence.
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�rst in studying the workings of school choice mechanisms in the presence of
both private schools and peer e¤ects.
For simplicity, we assume there is a single private school and that its price

is exogenous but our results can be generalized to more nuanced models of
the private sector. Parents now have a choice between the public school the
child is assigned to and a private school of quality qp, capacity �p and price
p > 0 after the school assignment algorithm is completed. The private school
uses the same technology to produce education and so its ex-post quality qp
is given by the mean ability of its student body.
Note that, by lemma 2, households are indi¤erent about where to live

and any allocation of households to districts that clear the housing markets
is an equilibrium of the location stage. The choice between public and pri-
vate schooling at the last stage of the game does not depend on the details
of the mechanism previously used. Therefore, the following single-crossing
condition holds both with DA and BM. Let tj be the household type that is
indi¤erent between school j and the private school (note that it depends on
p; qp and qj).

Lemma 3 Suppose A1 or A2 hold. If qj < qp and the price of the private
school p > 0: if a household with a child of ability t prefers the private school
to school j, then so do all households with children of ability t0 > t; and if a
household with a child of ability t prefers school j over the private alternative
so do all households with children of ability t0 < t.

5.2.1 Deferred Acceptance

In the presence of a private alternative, DAmay well generate partial segrega-
tion across public schools, provided demand for school quality increases with
type. If public schools are heterogenous ex-ante, those of higher exogenous
quality are able to retain more high type students. The consequence is that
(endogenous) peer quality di¤erences emerge across public schools, reinforc-
ing the initial (exogenous) di¤erences. This equilibrium displays a hierarchy
of school qualities and partial sorting but, because all agents submit the
same ranking of preferences and schools have no residential priorities, the
probabilities of admission at each public school are identical for all types.33

33Proposition 4 adopts assumption A1; it is straightforward to derive an analogous result
with preferences that satisfy A2.
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Proposition 4 Suppose A1 holds and let p > � > 0. Then, there is an
equilibrium in DA with no sorting between schools 1 and 2, but with partial
sorting between them and school 3 provided p < �+ h(�t; �t)� h(Et; �t).34

Proposition 4 imposes an upper bound on the price of the private school
which guarantees that t3 < �t, so that at least some households acquire private
education. It is worth noting that the result does not require the ghetto
e¤ect to dominate potential quality di¤erences due to peer e¤ects (as the
emergence of sorting requires in BM). Nevertheless, it is possible to show
that the stronger the ghetto e¤ect (i.e. the larger the initial di¤erences
across public schools) the larger the �nal quality gap between the bad and
the good public schools.35

5.2.2 Boston Mechanism

The availability of a private school also a¤ects the outcome of the BM in
important ways. On the one hand, the complementarity between school
quality and type is no longer necessary for the emergence of segregation when
agents have an outside option: an equilibrium displaying income segregation
exists if the marginal utility of income is decreasing. On the other hand,
if school quality and the child�s type are complements in the production of
human capital, the availability of a private alternative may well lead to an
equilibrium with a more elitist best public school. This gives rise to a new
source of unfairness: top types have higher chances of admission at the best
public school when a private school is present.
We start with the latter result. Let ~tmax denote the maximum equilibrium

cut-o¤ in the BM game with neither priorities nor private schools. We look
for an analogous equilibrium cut-o¤ ~tp when we include a private school with
price p. Such cut-o¤ exists since single-crossing conditions apply: if a type
t best responds by ranking school 1 in �rst position, a higher type must also
do so. Likewise, if a type t ranks school 2 in �rst position, a lower type must
do so as well. We prove in proposition 5 that this is indeed the case.

34Notice that proposition 4 does not rule out the possibility that some households as-
signed to schools 1 or 2 opt out as well. Indeed, that could happen if p < h(�t; �t)�h(Et; �t) <
�. Of course, since � > 0, in that case the cut-o¤ type would be larger in schools 1 and
2 than in school 3 and the result would still hold.
35In cases where p < �, the lowest type prefers the private alternative over school 3

and, by lemma 3, so do all agents. But higher types would then segregate from lower ones
by staying in school 3 provided �� p < h(�t; �t)� h(Et; �t). See footnote 39.
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Proposition 5 Suppose A1 holds and let � > ��. There exists a lower-
bound price p� and an upper-bound price p�� meeting h(�t; �t)�h(qmax; �t) +� �
p�� � p� � h(�t; �t) �h(qmin; �t) such that for any price p 2 [p�; p��], there exists
a sorting equilibrium in BM characterized by a cut-o¤ ~tp such that types
above this threshold rank school 1 �rst while types below rank school 2 in �rst
position. Moreover, ~tp > ~tmax.

Corollary 1 In a (maximum cut-o¤ ) sorting equilibrium in BM with a pri-
vate school, top-type students have a higher probability of accessing the best
school than when a private school does not exist. Furthermore, the ex-post
quality of the best public school, as well as that of school 2, increases with
respect to the case without private school.

The intuition is the following. Some households assigned by the mecha-
nism to the ghetto school opt out of the public system and send their child
to the private alternative, so that the ghetto school loses peer quality. Given
that agents who rank the best school �rst have a higher chance to receive
a slot in the ghetto school than those misreporting their preferences, the
former strategy becomes less attractive and more agents play the safer one.
Formally, the equilibrium cut-o¤type is higher with the private option, which
means the two good public schools have better peer quality and that the best
one admits top-types more easily, as compared to the no-private-school case.
Our �nal result shows the existence of a continuum of equilibria with full

income segregation under BM.

Proposition 6 Suppose A2 holds and that u(t)� u(t� p) > �+ h(Et; t)�
h(t; t). For any � > �� there are two prices p̂ and p̂0 > p̂; such that for
any p 2 (p̂; p̂0] a full segregation equilibrium exists in BM characterized by
two thresholds t̂ 2 (t1=3; t1=2) and t3 < t̂ such that all types above (below) t̂
rank school 1 (2) �rst; school 3 is ranked last by every type; (ii) all students
assigned to school 3 with type above (below) t3 opt for the private school,
while the rest stay put. These equilibria are sequential.

Income segregation emerges in this scenario if all households who rank
school 1 �rst have the back up of the private school, that is, if they have
enough income to avoid ending up in the ghetto school if rejected from school
1. Put di¤erently, income segregation arises when those who cannot a¤ord
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the private school misrepresent their preferences to play a safer strategy.36

The single-crossing condition then holds strictly under A2: because higher
income agents have lower marginal utility of income, their utility cost of
paying tuition fees p is smaller. Hence their relative valuation of the private
school (and so of strategy 1) is larger even if their kids do not bene�t more
from school quality than others.37

Remark 4 Instead of a private school with tuition fees p that induces a
threshold t3, for both preceding propositions we could have considered a "di-
rect" model in which only high types (with t above t3) had an outside option
that is better than the bad school yet worse than a good public school. An
example of this could have been the case of a selective private school. Con-
clusions would have been identical.

To further illustrate the role of the bad school e¤ect with a private school,
we present an example that resembles an equilibrium found by Epple and
Romano (1996). In this example, all public schools are equally good ex
ante. The private school captures the highest types, yet no public school
"elitization" arises.

Example 1 Let � = 0 and set p = h(qmax; t(2=3))� h(E(t
��t � t(2=3)� ; t(2=3)).

Both under A1 or A2, and both with DA and BM, an equilibrium exists where
all types above t(2=3) directly attend the private school; the remaining agents
evenly randomize between any possible ordering of the public schools. Ex post
we have q̂1 = q̂2 = q̂3 = E(t

��t � t(2=3)� and q̂p = qmax, and the t(2=3)-type
household is indi¤erent between the two strategies.38

36Given that school quality di¤erences do not make a di¤erence for the lowest type
children, assuming u(t)� u(t� p) > � simply ensures that their parents are poor enough
to prefer school 3 over the private alternative.
37Otherwise, the relative valuation of strategies 1 and 2 does not change with type and

the single-crossing condition only holds weakly.
38A similar example would arise with no private school when school 3 embeds a human

capital loss � = h(qmax; t(2=3)) � h(E(t
��t � t(2=3)� ; t(2=3)). Under A1, both DA and BM

sort students in a way that types above t(2=3) attend school 3 and types below attend
either school 1 or 2 indistinctly. This gives an interesting reinterpretation of � as a cost
which allows a public school to become selective.
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6 Concluding remarks

This paper has introduced a theory of sorting into public schools with school
choice. It is, to the best of our knowledge, the �rst study on school choice
mechanisms that endogenizes preferences and priorities. We showed that the
choice of the assignment mechanism, along with the details of the institu-
tional context in which it is applied, are crucial for the resulting distribution
of children across public schools and for the degree of equality of opportuni-
ties o¤ered by the education system. We thus provided a rigorous theoretical
underpinning for the equity concerns expressed by the OECD (2012) and oth-
ers, even if there are no transport costs or informational asymmetries. Our
analysis also o¤ers guidance about how to guarantee equality of opportunities
in a context with public sector school choice.
The work presented here invites to natural extension: the consideration

of a two-dimensional type space. We explore this richer framework in the ap-
pendix. There, richer households have higher willingness to pay than poorer
households with the same (ability) type t for the same priority right or for
a private school. Cut-o¤ equilibria in our model would become bandwidth
equilibria with a monotonic locus partitioning the bidimensional type space.
Quality di¤erences across schools would easily emerge as in our main model,
with just a mild positive correlation between income and ability. For in-
stance, it could be the case that both a rich low-type household and a poor
high-type household send their children to the best public school. Overall,
however, a rich high-type household would also enter that school. Thus, the
quality of this school would surely remain higher than any other public school
quality ex post.
The welfare implications of segregating or mixing students are well known

(Arnott and Rowse, 1987; Bénabou, 1996, RES). For that reason, we do not
carry out a welfare analysis.

7 Appendix

7.1 Proofs

Proof of Lemma 1. DA: Since it is expected that school 1 will have higher
quality than school 2, and given that school 3 is the worst school, all families
will submit (weakly dominant strategy) the same ranking of schools: 1,2,3.
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The DA algorithm will then assign the slots of school 1 to those students
with residence priority in district 1, and the slots of school 2 to the students
that have residence in district 2.
BM: Consider the families with residence priority at school 1. For them,

ranking school 1 �rst constitutes part of a weakly dominant strategy, since
they have guaranteed acceptance if they put it �rst in the submitted ranking
and this is in their interest because school 1 provides the highest quality of
the three. Fixing such a strategy feature for residents in district 1, ranking
school 2 in �rst position constitutes part of a weakly dominant strategy for
residents of district 2. Nothing is to be gained by putting school 1 �rst, since
only residents in district 1 will be accepted there. On the contrary, there is a
potential loss if residents in district 3 rank school 2 in �rst position: they take
the slots that residents in district 2 miss by applying to school 1 in the �rst
round. Hence, the unique equilibrium (undominated strategies) outcome is
the one in which the slots of school 1 are assigned to those students with
residence priority in district 1, and the slots of school 2 to the students that
have residence in district 2.

Proof of Proposition 1. The proof trivially derives from lemma 1.

Proof of Proposition 2. DA: Suppose that q̂1 > q̂2 > q̂3. Since DA is
strategy-proof, all agents would report the true ranking among schools. Con-
sequently, all agents would have equal chances to access any of the schools.
This leads to q1 = q2 = q3, a contradiction. Suppose q̂1 > q̂2 = q̂3. All agents
would rank school 1 �rst and schools 2 and 3 would �ll their slots with the
rejected students. But then q1 � maxfq2; q3g, a contradiction. Finally, sup-
pose q̂1 = q̂2 > q̂3. All agents would rank school 3 last, and that school would
�ll its capacity with the rejected students from schools 1 and 2. But then
q3 � minfq1; q2g, a contradiction.
BM: Let j = 3 be the unique worst school, that is q̂3 < minfq̂1; q̂2g: Then

no equilibria exists in which a positive mass of households ranks school 3 other
than last. Therefore the quality of school 3 will be de�ned by the students
who are rejected via fair lotteries from both schools 1 and 2. Consequently,
q3 must be a weighted average of q1 and q2, which contradicts school 3 being
the worst one. Similarly, we cannot have q̂1 > q̂2 = q̂3. In that case everyone
would optimally rank school 1 �rst and we would have q1 � maxfq2; q3g,
again, a contradiction.

Proof of Proposition 3(a). The proof makes use of the following lemma:
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Lemma A1. Let WLOG q̂1 � q̂2 and assume � > ��. Then in equilibrium
under BM we have q1 � q3 � q2:
Proof of Lemma A1. Since � > ��, it is clear that school 3 is the
worst one for every household type. Therefore, no equilibria exists in which
a positive mass of households ranks school 3 other than last. Then the
quality of school 3 will be de�ned by the students who are rejected via fair
lotteries from both schools 1 and 2. Consequently, any consistent q3 must be
a weighted average of q1 and q2.
. When submitting a ranking in BM, parents can restrict attention to two
di¤erent ranking strategies. School 3 is the worst school for every parent, and
there is no strategic reason to put it in a position other than last. Should
that be done, the chances of going to the worst school would be increased,
and the chances to go to any other school would be reduced. So the relevant
strategy space for parents is simpli�ed to a set with these two elements: �put
school 1 �rst, 2 second and 3 last", or �put school 2 �rst, 1 second and 3
last", denoted as s 2 f1; 2g respectively. WLOG we analyze the case where
q̂1 > q̂2. Let ms denote the mass of parents using strategy s. It is clear that
m2 = 1 �m1. In equilibrium we always have m2 < 1=2 < m1 because the
chances to get access at school 2 must be higher than the chances to be ac-
cepted at school 1 (otherwise all parents would put school 1 in �rst position).
When computing the optimal list there are two cases to consider.

Case 1: Both schools 1 and 2 give all their slots in the �rst round
of the assignment procedure (m2 � 1=3). In such a case, parents play-
ing strategy s have a probability 1=3ms of having their children accepted at
school s, 1 � 1=3ms of having their children assigned to school 3 and zero
chance at the remaining school. The expected utility is x + h(q̂s; t)=3ms +
(h(q̂3; t) � �)(1 � 1=3ms) for a t-type parent playing strategy s. A t-type
parent chooses strategy 1 if

h(q̂1; t)� h(q̂3; t) + �
h(q̂2; t)� h(q̂3; t) + �

>
m1

m2

(1)

and she chooses strategy 2 if the inequality is reversed. We apply the follow-
ing single-crossing lemma:

Lemma A2. Let q̂1 > q̂2 and � > ��. Then h(q̂1;t)�h(q̂3;t)+�
h(q̂2;t)�h(q̂3;t)+� is increasing

in t.
Proof of Lemma A2. Using lemma A1 (consistency of beliefs implies

23



q̂3 � q̂2), hq � 0 and hqt > 0, we are done, since we can rearrange

h(q̂1; t)� h(q̂3; t) + �
h(q̂2; t)� h(q̂3; t) + �

=
h(q̂1; t)� h(q̂3; t) + �
�� (h(q̂3; t)� h(q̂2; t))

Both the numerator and the denominator are positive. The numerator is
increasing in t and the denominator is decreasing in t.

By lemma A2, if a t-type parent best-responds with strategy 1 and t0 > t,
a t0-type parent also chooses strategy 1 optimally. Likewise, if a t-type
parent chooses strategy 2 and t" < t; a t"-type parent chooses strategy 2
as well. This suggests an equilibrium characterized by a threshold t̂ (with
1=2 > �(t̂) � 1=3) such that types above it play strategy 1 and the types
below play strategy 2. This threshold is characterized by

h(q1(t̂); t̂)� h(q3(t̂); t̂) + �
h(q2(t̂); t̂)� h(q3(t̂); t̂) + �

=
[1� �(t̂)]
�(t̂)

where q1(t̂) � E(t
��t � t̂) ; q2(t̂) � E(t ��t � t̂) ; and q3(t̂) � 3Et� q1(t̂)� q2(t̂)

(since consistency requires [q1(t̂) + q2(t̂) + q3(t̂)]=3 = Et). We rearrange this
equation as

G1(t̂) �
�(t̂)

1� 2�(t̂)
h(q1(t̂); t̂)�

1� �(t̂)
1� 2�(t̂)

h(q2(t̂); t̂) + h(q3(t̂); t̂) = � (2)

Case 2: School 1 gives all of its slots in the �rst round and school
2 does not (m2 < 1=3). Parents playing strategy 2 have their children
accepted at school 2 for sure, obtaining an expected utility x + h(q̂2; t) de-
pending on their types t. Parents playing strategy 1 have a probability 1=3m1

of having their children accepted at school 1, 1=3�m2

m1
= 1� 2

3m1
of having their

children assigned to school 2 and a remaining 1=3m1 chance of sending their
children to school 3. So if the parent�s type is t, the expected utility from
playing strategy 1 is x+ h(q̂2; t)+

h(q̂1;t)+h(q̂3;t)���2h(q̂2;t)
3m1

. By comparing it it
to x+ h(q̂2; t); a t-type parent chooses strategy 1 if

h(q̂1; t)� 2h(q̂2; t) + h(q̂3; t) > �

and she chooses strategy 2 if the inequality is reversed. Using lemma 3
(q̂3 � q̂2) and hqt > 0, the left-hand side is increasing in t. Moreover, notice
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that in this case we have q3 = q1 (no types ranking school 2 �rst are assigned
to school 3). This again suggests an equilibrium characterized by a threshold
t̂ (with �(t̂) < 1=3) such that types above it play strategy 1 and the types
below play strategy 2. This threshold is characterized by

G2(t̂) � h(q1(t̂); t̂)� 2h(~q2(t̂); t̂) + h(~q3(t̂); t̂) = � (3)

with q1(t̂) � E(t
��t � t̂) ; ~q3(t̂) � q1(t̂) and ~q2(t̂) � 3Et� 2q1(t̂) (since [q1(t̂) +

~q2(t̂) + ~q3(t̂)]=3 = Et).
Compiling both cases, we de�ne the function G : [t; t(1=2))! R+ as

G(t) �
�
G2(t) if �(t) < 1=3
G1(t) if �(t) � 1=3

Notice that G is continuous on its domain since G1(t) = G2(t) when �(t) =
1=3. There would be an equilibrium characterized by a threshold ~t below the
median type if this ~t satis�es

G(~t) = �

Given the assumptions on h, we can prove that the Boston Mechanism con-
tains an equilibrium with sorting between schools 1 and 2.
Existence: Since h(�; t) is a constant function, G(t) = 0. Around the median
t(1=2), we have lim

t!t(1=2)
G(t) =1. Given the continuity of G, the intermediate

value theorem applies to show existence.
Segregation arises from the cut-o¤ equilibrium strategy pro�le. When
�(~t) < 1=3 sorting is not full because a positive mass of students ranking
school 1 �rst are assigned to school 2. However, there is partial sorting be-
cause �2 is a weighted average between �1 = �(�

��t � ~t) and �2 =�(� ��t � ~t) ,
hence �1FOSD�2.
The equilibrium is sequential because a sequence of beliefs (qn1 ; q

n
2 ; q

n
3 )n2N !

(q1; q2; q3) with qn1 > qn2 induces a sequence of best response pro�les R
n :

D � � ! P(fs1; s2; s3g) that can be characterized by a sequence of thresh-
olds ~tn (types above the threshold rank school 1 �rst, all types below rank
school 2 �rst) such that ~tn ! ~t.
Uniqueness emerges when � is high enough because there exists t00 <
t(1=2) such that both (1) G(t) is strictly increasing in t 2 [t00; t(1=2)) (since
lim

t!t(1=2)
G(t) = 1) and (2) for any � < t00 < � 0 we have G(�) < G(� 0) (again
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for the same reason). It is enough to set � > G(t00) to obtain uniqueness of
~t.
Full sorting if � is high enough: observing the function G2, one can set
� > 2[h(qmax; �t)�h(qmin; �t)], thus G(~t) = � cannot be satis�ed if �(~t) < 1=3
and sorting must be full.
Proof of Proposition 3(b). Since � > ��, all agents rank school 3 third.
As in the proof of Proposition 2, suppose that q̂1 > q̂2 > q̂3. Since DA is
strategy-proof, all agents would report the true ranking among schools. Con-
sequently, all agents would have equal chances to access any of the schools.
This leads to q1 = q2 = q3, a contradiction. Suppose q̂1 > q̂2 = q̂3. All agents
would rank school 1 �rst and schools 2 and 3 would �ll their slots with the
rejected students. But then q1 � maxfq2; q3g, a contradiction. Finally, sup-
pose q̂1 = q̂2 > q̂3. All agents would rank school 3 last, and that school would
�ll its capacity with the rejected students from schools 1 and 2. But then
q3 � minfq1; q2g, a contradiction.

Proof of Lemma 3. The type indi¤erent between school j and the private
alternative, tj, satis�es:

h(qp; tj)� h(qj; tj)� [u(tj)� u(tj � p)� 1j=3 ��] = 0: (4)

The result follows immediately either if h is supermodular, since qp > qj, or
if u is strictly concave.

Proof of Proposition 4. Let q̂1 = q̂2 > q̂3. There is a (dominant strat-
egy) equilibrium in which all agents rank school 1 �rst, school 2 second and
school 3 last. DA allocates students across schools randomly so that average
peer quality of children admitted to each school is equal to Et, regardless the
value of �. Then, under assumption A1, p � � + h(�t; �t) � h(Et; �t) ensures
the existence of a cut-o¤ value of t; t3 � �t, such that types above t3 assigned
to school 3 opt for the private school at the �nal stage while types below t3
stay put. Hence �3 = �(�jt � t3). Next, note that p � h(�t; �t) � h(Et; �t) is
a su¢ cient condition for no agent assigned to schools 1 and 2 to purchase
private education. In that case, we have ex-post q1 = q2 = Et, as in propo-
sition 2, and the distribution of types assigned to both schools 1 and 2, �,
�rst-order stochastically dominates �3. If the price of the private school
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falls su¢ ciently below that level, then some high types assigned to schools
1 or 2 will opt for the private alternative so that t1 = t2 < t. In that case,
since � > 0, it is straightforward to show that t3 < t1 = t2, so that, again,
�1 = �2 = �(�jt � t1) �rst order stochastically dominates �3 = �(�jt � t3).
For sequentiality, simply let qn1 > q

n
2 > q

n
3 all converge to q

n
j ! E(tjt � tj).

� > 0 forces t3 < t1 = t2. For all n the proposed equilibrium strategy
pro�le holds, and the ex-post qualities coincide with those arising from the
equilibrium.
Proof of Proposition 5. p� � h(�t; �t)� h(qmin; �t) ensures that students
assigned to schools 1 and 2 do not take the private school option. p�� � h(�t; �t)
�h(qmax; �t)+� ensures that t3 < �t. Let t̂ be a candidate equilibrium cut-o¤.
In the base model without a private school, we de�ned the function G(t̂)
whose value depends on �(t̂) and on the ex-post qualities q1(t̂), q2(t̂) (~q2(t̂))
and q3(t̂) (~q3(t̂)). Here, we use the same notation just adding superscript
p, jointly with qp(t̂), the ex-post quality of the private school, to de�ne the
analogous function Gp(t̂):

Gp(t̂) =

8>>><>>>:
h(qp1(t̂); t̂)� 2h(~q

p
2(t̂); t̂)+

+maxfh(~qp3(t̂); t̂)��; h(qp(t̂); t̂)� pg if t < t(1=3)
�(t̂)

1�2�(t̂)h(q
p
1(t̂); t̂)�

1��(t̂)
1�2�(t̂)h(q

p
2(t̂); t̂)+

+maxfh(qp3(t̂); t̂)��; h(qp(t̂); t̂)� pg if t � t(1=3)

The proof requires the following lemma:
Lemma A3. Set p 2 [p�; p��]. Consider a cut-o¤ t 2 (t; t(1=2)) such that
types above it rank school 1 in �rst position while types below rank school
2 �rst. There exists t�3 2 (t; �t) such that for any t3 2 (t�3; �t): 1) the ex-post
qualities of schools 1 and 2 remain unaltered regardless the presence of a
private school, 2) the ex-post quality of school 3 diminishes with a private
school, 3) minfqp1(t); qp(t)g � ~qp3(t) � ~qp2(t) and minfq

p
1(t); qp(t)g � qp3(t) �

qp2(t) (single-crossing conditions apply) and 4) G
p(t) < G(t)�� for all t.

Proof of Lemma A3.
Let t � t(1=3) and consider any t�3 > t. Then, the ex-post quality of school
1 (respectively, 2) is the same with and without the private school: the
expected type conditional on being above (below) t. q3(t) is a weighted av-
erage between q1(t) and q2(t), while q

p
3(t) is a weighted average, with the

same weights as q3(t), of the following two elements: a) the expected type
conditional on it being in the interval [t; t�3], and b) q2(t). It follows that
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q3(t) > q
p
3(t) � q2(t) = q

p
2(t).

Since naturally minfqp1(t); qp(t)g > q
p
3(t), single crossing arises (analogously

to the case with no private school: �(t̂)

1�2�(t̂) h(q
p
1(t̂); �)�

1��(t̂)
1�2�(t̂) h(q

p
2(t̂); �)

+maxfh(qp3(t̂); �) ��; h(qp(t̂); �) �pg is increasing in �).
Moreover, since qp1(t) = q1(t), q

p
2(t) = q2(t) and q3(t) > q

p
3(t) and given that

the t-type household does not choose the private school, it also follows that
Gp(t) < G(t)��.
Let t < t(1=3). We show the existence of a t�3 2 (t; �t) such that all the de-
sired properties are met. q1(t) (and also q

p
1(t)) still equals the expected type

conditional on being above t. ~q2(t) (as well as ~q
p
2(t)) equals 3�(t) times

the expected type conditional on being below t plus 1 � 3�(t) times q1(t).
While ~q3(t) = q1(t), ~q

p
3(t) is the expected type conditional on it lying on

the interval [t; t�3]. It follows again that qp1(t) = q1(t) � ~q3(t) > ~qp3(t).
And for t�3 high enough we have ~q

p
3(t) � ~q2(t) = ~qp2(t). Single crossing

arises because qp1(t) > ~qp3(t) � ~qp2(t) (as in the case with no private school:
h(qp1(t̂); �) �2h(~q

p
2(t̂); �) +maxfh(~q

p
3(t̂); �) ��; h(qp(t̂); �) �pg is increasing

in �). qp1(t) = q1(t), ~q
p
2(t) = ~q2(t), ~q3(t) > ~q

p
3(t) and t choosing to stay put in

school 3 if assigned there implies Gp(t) < G(t)��.
It is immediate that the aforementioned properties would hold with any
t3 > t�3, since q

p
3(t) (and ~q

p
3(t)) increases with t3 while never being higher

than q3(t) (or ~q3(t)).
We can now conclude the proof of the proposition. We just need to ensure
that t�3 is below ~tmax so that lemma A3 holds. It follows that Gp(~tmax) <
G(~tmax) � � = 0. Gp(�) is continuous and lim

t!t(1=2)
Gp(t) = 1, so the in-

termediate value theorem applies to show existence of at least one cut-o¤
~tp 2 (~tmax; t(1=2)) meeting Gp(~tp) = 0. We obtain the same result for each
t3 2 (t�3; �t). A di¤erent price is chosen for each t3 so as to make t3�type
households indi¤erent between school 3 and the private school, giving the
required range of prices.

Either h(~qp3(t̂); t3)�� = h(qp(t̂); t3)� p
or h(qp3(t̂); t3)�� = h(qp(t̂); t3)� p

Obviously t̂ depends on t3; and p depends on both t̂ and t3. Since p varies
continuously (although maybe not monotonically) with both t̂ and t3, the
desired range of prices constitutes an interval [p�; p��].

Proof of Proposition 6. We initially assume: (i) that students assigned
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to schools 1 and 2 stay put, and (ii) that t3 � t̂; and then prove that both (i)
and (ii) hold in the equilibria we �nd.39 Under (i) the quality of schools 1 and
2 is determined at the school assignment stage and we can write the quality
of these two schools as a function of the cut-o¤: qpj (t̂), j = 1; 2. Notice as
well that that under (ii) qp2(t̂) < qp(t̂) � q

p
1(t̂) for any t̂ 2 (t; t1=2):

We start with the last stage of the game, when the quality of school 3 as that
of the private one are determined. Let � (t; p) = u(t)�u(t� p) be the utility
cost of paying p units of the numeraire. � (t; p) is positive for any p > 0,
continuous, and satis�es � (t; t) = 1 under assumption A2. Equation (5)
determines the type indi¤erent between school 3 and the private alternative
t3 at the �nal stage:

�(t3; p) + h(q
p
3(t̂; t3); t3)� h(qp(t̂; t3); t3)�� = 0 (5)

Given � and the school assignment cut-o¤ t̂, this equation has (at least)
one solution t3 2

�
t; t
�
for every price p 2

�
0; t
�
:40 Because its LHS is dif-

ferentiable for all (t3; t̂; p), by the implicit function theorem, (5) de�nes a
continuous and well-de�ned function t3(p; t̂) from

�
0; t
�
�
�
t1=3; t1=2

�
onto

(t; �t) that determines the last stage equilibrium cut-o¤ t3:
Consider now the school assignment stage. For any � > �� all agents rank
school 3 last in the school assignment stage. Therefore, the relevant strategy
space has the same two elements as before: �put school 1 �rst, 2 second and
3 last", or �put school 2 �rst, 1 second and 3 last". It is then possible to use
the function analog to Gp(t̂) which, under assumption A2, we can write as
follows for t̂ 2

�
t1=3; t1=2

�
:

Hp(t3; t̂; p) =

(
�(t̂)

1�2�(t̂)h(q
p
1(t̂); t̂)�

1��(t̂)
1�2�(t̂)h(q

p
2(t̂); t̂)+

+maxfh(qp3(t3; t̂); t̂)��; h(qp(t̂); t̂)� �(t; p)g:

Let

r(t3; t̂) =

(
�(t̂)

1�2�(t̂)h(q
p
1(t̂); t̂)

� 1��(t̂)
1�2�(t̂)h(q

p
2(t̂); t̂) + h(qp(t3; t̂); t̂):

39In fact, no equilibrium exists in which (ii) does not hold.
40If for some t̂ we have that u(t) � u(t � p) + h(t; t) � h(qp(t̂; t); t) � � < 0 then all

types would prefer the private school and t3 = t; if instead u(t)� u(t� p) + h(q3(t̂; t); t)�
h(t; t)�� > 0 then all types would prefer school 3 to the private option so that t3 = t.
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Then, provided (ii) holds, Hp(t3; t̂; p) = r(t3; t̂)� �
�
t̂; p
�
so that a �rst-stage

equilibrium candidate cut-o¤ t̂ must satisfy

r(t3; t̂)� �(t̂; p) = 0: (6)

Plug t3(p; t̂) into (6). While r(t3(p; t̂); t̂) may not be monotone in t̂, it is
strictly positive for all t̂ 2 (t1=3; t1=2), since qp2(t̂) < qp(t̂) � q

p
1(t̂) for any t̂ 2

(t(1=3); t(1=2)). Furthermore, lim
t̂!t1=2

r(t3(p; t̂); t̂) =1, since 1� 2�
�
t(1=2)

�
= 0.

Then, for any t̂ 2 (t1=3; t1=2), there exists a unique price such that (6) holds,
because the RHS is positive and continuous and the LHS varies continuously
from 0 to1 for p 2 (0; t̂). Again, since its LHS is continuously di¤erentiable
for all (t̂; p), by the implicit function theorem, (6) de�nes a continuously dif-
ferentiable function p(t̂) from

�
t(1=3); t(1=2)

�
onto (0; �t) such that (6) holds.

The set of points
�
t̂; p(t̂); t3(p(t̂); t̂)

�
for t̂ 2 (t(1=3); t(1=2)) is the set of equilib-

rium candidates. Henceforth, we simplify notation and use qp3(t̂) and qp(t̂).
We next prove that satisfaction of the relevant single-crossing condition re-
quires t3 � t̂, as assumed initially in the proof, and use the result to restrict
the set of equilibrium candidates. Take a candidate cut-o¤ t̂, �x school qual-
ities accordingly at qpj (t̂); j = 1; 2; 3; p; and calculate the direct derivative of
Hp(t3; t; p) with respect to t. Under assumption A2, type and school quality
are independent in the production of human capital and so this derivative is:

Hp0(t; p) =

�
0; if t < t3

u0(t� p)� u0(t) > 0; otherwise. (7)

(7) implies that the relative valuation of strategies 1 and 2 for a given cut-o¤
does not change with type for t < t3, i.e. for types that prefer school 3 over
the private school, but rises with income for the rest, i.e. for t � t3. Note that
the single-crossing condition holds strictly provided Hp0(t; p) increases with
type for t � t̂, that is, for types at least as high as the cut-o¤ (otherwise, it
holds weakly). Hence, given a candidate cut-o¤ t̂, a necessary and su¢ cient
condition for preferences over the two strategies to satisfy the single-crossing
condition is that t3 be no larger than t̂, which requires:

�(t̂; p
�
t̂
�
) + h(qp3(t3(t̂); t̂)� h(qp(t̂); t̂) � � (8)

For a candidate equilibrium t̂ > t1=3, the equilibrium condition is

�(t̂)

1� 2�(t̂)
h(qp1(t̂); t̂)�

1� �(t̂)
1� 2�(t̂)

h(qp2(t̂); t̂) + h(qp(t̂); t̂) = �(t̂; p
�
t̂
�
): (9)
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Plugging the LHS of (9) into (8) we obtain that a candidate cut-o¤ t̂ > t1=3
satis�es the single-crossing condition provided:

�(t̂)

1� 2�(t̂)
h(qp1(t̂); t̂)�

1� �(t̂)
1� 2�(t̂)

h(qp2(t̂); t̂) + h(q
p
3(t̂); t̂) � � (10)

Let the LHS of (10) be denoted with s(t̂) and take its side limit when t̂
approaches t(1=3) from greater values:

lim
t̂!t+

(1=3)

s(t̂) = lim
t̂!t+

(1=3)

�
h(qp1(t̂); t̂)� 2h(q

p
2(t̂); t̂) + h(q

p
3(t̂); t̂)

�
<

< lim
t̂!t+

(1=3)

�
h(qp1(t̂); t̂)� h(q

p
2(t̂); t̂)

�
if lim
t̂!t+

(1=3)

�
qp3(t̂)� q

p
2(t̂)

�
� 0. Moreover,

lim
t̂!t+

(1=3)

�
h(qp1(t̂); t̂)� h(q

p
2(t̂); t̂)

�
= h(E( tj t > t(1=3)); t(1=3))� h(E( tj t < t(1=3)); t(1=3)) <
< h(qmax; t(1=3))� h(qmin; t(1=3)) = �� � �:

We next go back to the last stage to prove existence of an equilibrium with
t3 < t̂, denote with Vj(t3; t̂; p; t) (j = 3; p:) the utility derived from school 3
and the private school by a household of type t at

�
t3; t̂; p

�
. The previous in-

equality implies that lim
t̂!t+

(1=3)

�
Vp(t̂; t̂; p; t̂)� V3(t̂; t̂; p; t̂)

�
> 0 for any � � ��,

since in that case lim
t̂!t+

(1=3)

qp3(t̂) = lim
t̂!t+

(1=3)

qp2(t̂). Moreover, the assumption that

the lowest type is poor enough to satisfy u(t)�u(t�p) > �+h(Et; t)�h(t; t)
ensures that lim

t̂!t+
(1=3)

�
Vp(t; t̂; p; t)� V3(t; t̂; p; t)

�
< 0. Hence, by continuity

and the intermediate value theorem, a solution of the last stage problem ex-
ists with t3 < t̂ and the single-crossing condition holds strictly in the limit
when t̂ ! t+(1=3) for any � � ��. By continuity, it also holds for some non-
degenerate interval

�
t(1=3); �t (�)

�
where s(�t (�)) = �: Note that �t (�) < t(1=2)

for lim
t̂!t(1=2)

s(t̂) =1:

We continue by proving that all students assigned to schools 1 and 2 stay
put, according to the initial assumption in the proof. Agents assigned to
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school 1 clearly prefer to stay put for any p > 0, since qp(t̂) � qp1
�
t̂
�
provided

t3 � t̂: Agents assigned to school 2 have type t � t̂, since the school is over-
subscribed in the �rst round when t̂ > t1=3; then, by lemma 3 they all prefer
it over the private alternative if:

u(t̂)� u(t̂� p) > h(qp(t̂); t̂)� h(qp2(t̂); t̂)

which, when t̂ � t1=3 and using (9), can be rewritten as

�(t̂)

1� 2�(t̂)
h(qp1(t̂); t̂)�

1� �(t̂)
1� 2�(t̂)

h(qp2(t̂); t̂)+h(qp(t̂); t̂) > h(qp(t̂); t̂)�h(q
p
2(t̂); t̂):

This inequality simpli�es to �(t̂)

1�2�(t̂)

�
h(qp1(t̂); t̂)� h(q

p
2(t̂); t̂)

�
> 0, and so holds

for any t̂.
We can now establish the set of private school prices such that an equilib-
rium exists for some t 2 (t(1=3); �t (�)]. Since p(t) is a continuous function,
the extreme value theorem implies it has a maximum and a minimum in�
t(1=3); �t (�)

�
. If the minimum is reached at t(1=3) then there is a half-closed

non-degenerate interval of prices with open lower bound p(t(1=3)) such that
an equilibrium exists, i.e. for which (9) and (10) hold with t̂ 2 (t(1=3); �t (�)]:
Otherwise the interval is closed and has a lower bound smaller than p(t(1=3)).
If the maximum is reached at �t (�) then the upper bound price is p (�) =
p
�
�t (�)

�
.

These equilibria are sequential because one can construct a sequence of
beliefs (qn1 ; q

n
2 ; q

n
3 ; q

n
p )n2N ! (qp1

�
t̂
�
; qp2
�
t̂
�
; qp3
�
t̂
�
; qp
�
t̂
�
) with qn1 � qnp >

qn2 � qn3 which induces a sequence of best response pro�les R
n : D � � !

P(fs1; s2; s3g) and last stage choices that can be characterized by a sequence
of pairs of thresholds

�
t̂n; tn3

�
such that

�
t̂n; tn3

�
!
�
t̂; t3

�
.

32



7.2 An alternative ghetto e¤ect

We consider a di¤erent modeling of the human capital loss produced by
being assigned to a bad school. In the main model, the human capital loss is
constant over all types. Here, we consider a reduction in quality: if the mean
type across the students assigned to school 3 is q3, then the school quality is
�q3, where � 2 (0; 1) is a "degradation" factor that applies only to school 3.
So the bad school e¤ect a¤ects school quality equally for every student.
We assume that t > 0 and that h(�; t) is de�ned on (0; �t] for every t, with

lim
q!0
h(q; t) = �1 and h(t; t) � 0: Going to a su¢ ciently degraded bad school

produces an enormous human capital loss. Under these assumptions, one can
see that the single-crossing conditions ensuring that the Boston Mechanism
without priorities generates an equilibrium with sorting hold here, if the
degradation factor is low enough.

Lemma 4 If � is su¢ ciently small and q1 > q2, then both
h(q1;t)�h(�q3;t)
h(q2;t)�h(�q3;t) and

h(q1;t)+h(�q3;t)
h(q2;t)

are increasing in t 2 [t; �t].

The proof arises immediately because h(�q3; t) becomes negative and suf-
�ciently low. The �rst ratio is qualitatively equivalent to h(q1;t)�h(q3;t)+�

h(q2;t)�h(q3;t)+�
in the main model, case 1. The second ratio is qualitatively equivalent to
h(q1;t)�h(q3;t)+�

h(q2;t)
, case 2. Then, for � su¢ ciently close to 0, we can ensure the

existence of a sequential equilibrium with sorting as in the main model. More-
over, for � su¢ ciently close to 0, this equilibrium would entail full sorting
(just as in the main model with � high enough).

7.3 The base model with more than 3 schools

As we have mentioned in section 4, DA with no residence priority nor private
schools does not generate sorting between schools regardless the number of
schools. It is not clear if the results we found for BM in the same section
extend to scenarios with more than three schools. Suppose that we have
J > 3 equally sized schools and that school J is bad (being assigned there
entails a utility loss equal to � > 0). Is there an equilibrium with (full)
sorting?

Proposition 7 In BM with no priorities nor private schools, if � is su¢ -
ciently large, there only exist sequential equilibria with full sorting between
every pair of good schools i; j (i < j).
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Proof. The �rst step is to show that with � su¢ ciently large, all schools
apart from the bad one give all their slots in the �rst round in equilibrium.
Suppose not. If a strict subset S � f1; :::; J � 1g of good schools do not give
all its slots in the �rst round, then any student who ranks a school from S in
�rst position avoids the punishment � for sure. Conditional on ranking any
school in the complement of S �rst, the probability of being assigned to the
worst school (hence su¤ering the utility loss �) is on average at least 1

J�#S .
Setting � > (J �#S)[h(E(tj�(t) � (J � 1)=J); �t) � h(E(tj�(t) � 1=J); �t)],
some types who were not ranking a school from S in �rst position would be
strictly better-o¤ ex ante by doing so. Hence we did not have a best-response
pro�le, a contradiction.
The second step is to show how, when the second round assigns slots only

to the worst school, the equilibrium strategy pro�le R with q1 > q2 > ::: >
qJ�1 is characterized by cuto¤s. In that context, strategies can be simpli�ed
to "what good school to rank �rst": a total of J � 1 relevant strategies.
Let �i and �j denote the probabilities of being accepted at schools i and j
respectively, conditional on ranking respectively i or j �rst. Let also qi > qj:
Conditional on ranking i �rst, the expected payo¤ for a t-type household is
�ih(qi; t) + (1� �i)[h(qJ ; t)��]. An analogous expected payo¤ form arises
when ranking j �rst. A t-type household prefers to rank i �rst over ranking
j �rst if h(qi;t)�h(qJ ;t)+�

h(qj ;t)�h(qJ ;t)+� >
�j
�i
. The left-hand side ratio is increasing in t if �

is high enough: the �rst derivative is positive when

� > h(qJ ; t)� h(qj; t)� [ht(qJ ; t)� ht(qj; t)]
h(qi; t)� h(qj; t)
ht(qi; t)� ht(qj; t)

where the right-hand side is upper-bounded even if qj ! qi since lim
qj!qi

h(qi;t)�h(qj ;t)
ht(qi;t)�ht(qj ;t) =

hq(qi;t)

hqt(qi;t)
, bounded above as the domain of h is compact and

h is doubly di¤erentiable with hqt 6= 0. Since h(qi;t)�h(qJ ;t)+�
h(qj ;t)�h(qJ ;t)+� is increasing,

there exists a threshold t̂ij such that types above it prefer to rank i �rst over
ranking j �rst while types below prefer the opposite. Moreover, for any triple
of good schools i; j; k such that qi > qj > qk, we have t̂ij > t̂jk (otherwise
no student would rank school j �rst, contradicting the fact that every good
school gives all of its slots in the �rst round). Therefore we have proven that
a series of thresholds �t � t̂01 > t̂12 > t̂23 > ::: > t̂J�2;J�1 > t̂J�1;J � t (where
types in (t̂j;j+1; t̂j�1;j) rank school j �rst) characterize a best-response pro�le
that produces q1 > q2 > ::: > qJ�1 ex post.
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Existence: The suggested equilibrium would satisfy, for every j = 1; ::; J�
2; and using the notation T � (t̂01; t̂12; t̂23; :::; t̂J�2;J�1; t̂J�1;J) :

Gj;j+1(t̂j;j+1; T�j;j+1)

� �(t̂j;j+1)� �(t̂j+1;j+2)
�(t̂j�1;j)� 2�(t̂j;j+1) + �(t̂j+1;j+2)

h(qj(t̂j;j+1; t̂j�1;j); t̂j;j+1)

� �(t̂j�1;j)� �(t̂j;j+1)
�(t̂j�1;j)� 2�(t̂j;j+1) + �(t̂j+1;j+2)

h(qj+1(t̂j;j+1; t̂j+1;j+2); t̂j;j+1)

+h(qJ(T ); t̂j;j+1)
= �

where qj(t̂j;j+1; t̂j�1;j) � E(tjt̂j;j+1 � t � t̂j�1;j) > qj+1(t̂j;j+1; t̂j+1;j+2) �
E(tjt̂j+1;j+2 � t � t̂j;j+1), and qJ(T ) � J � Et �

P
j=1;::;J�1 qj(t̂j;j+1; t̂j�1;j)

(since
PJ

j=1 qj=J = Et).
Such an equilibrium exists because (1) lim

�(t)��(t̂j+1;j+2)!1=J
Gj;j+1(t; T�j;j+1) <

� for � high enough and (2) lim
�(t)!�(t̂j�1;j)+�(t̂j+1;j+2)

2

Gj;j+1(t; T�j;j+1) = 1.

Since each function Gj;j+1(t; T�j;j+1) is continuous in t we can make use of
the intermediate value theorem to show existence.
Finally, we show that an equilibrium with qi = qj (i 6= j) is not sequential.

Such an equilibrium belief cannot be con�rmed ex post through a threshold-
like strategy pro�le (where only types above some threshold t̂ij can rank one
of the schools �rst and only types below can rank the other school �rst.)
Yet for any sequence (qni ; q

n
j ) ! (qi; qj) with qni 6= qnj we have that the best-

response pro�le Rn is characterized by a threshold t̂nij such that only types
above the threshold can rank one of the schools �rst and only types below
can rank the other school �rst. Then the limit of the sequence Rn cannot
converge to the initial equilibrium strategies supporting qi = qj.
An important corollary here is that any sequential equilibrium produces

full sorting between any two schools that give all slots in the �rst round. Could
there be a sequential equilibrium with no sorting when � is not su¢ ciently
high? The answer is yes, although not generically. We illustrate the case
with one example.

Example 2 Suppose t is uniformly distributed in the unit interval [0; 1] and
set J = 4, where school 4 is the bad school. We look for a sequential equilib-
rium in BM in which in the �rst round there is a threshold t̂12 (types above
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put school 1 in �rst position, types below rank school 2 �rst) and in the second
round there is a threshold t̂23 (types above put school 2 in second position,
types below rank school 3 in second position). School 1 is overdemanded in
the �rst round and schools 2 and 3 are overdemanded in the second round.
This equilibrium is intended to satisfy q1 > q2 = q3 ex post. It is sequential
because one can construct a sequence of beliefs (qn1 ; q

n
2 ; q

n
3 )! (q1; q2; q3) such

that qn2 > qn3 and q
n
1 =q

n
j > q1=qj; j 2 f2; 3g; which induce threshold strate-

gies characterized by cuto¤s (t̂n12; t̂
n
23)

41 that converge to (t̂12; t̂23) as n grows
large. WLOG any other ranking strategy pro�le yielding q2 = q3 ex post would
not be part of a sequential equilibrium since for that we need cut-o¤ strategy
pro�les.
When � is the uniform between 0 and 1, we can readily calculate those

cuto¤s (t̂12; t̂23) regardless the shape of h. The �rst condition is q2 = q3, that
is,

1

1=4

�
t̂12 �

t̂12
2
+ (1=4� t̂12)

1 + t̂23
2

�
=
t̂12 + t̂23
2

while the second condition is that applicants for school 2 in the second round
and applicants for school 3 in the second round face the same chances of being
accepted, namely

1=4� t̂12
(3=4� t̂12)1�t̂231�t̂12

=
1=4

(3=4� t̂12) t̂23�t̂121�t̂12

The solution to the system of equations is t̂12 ' 0:13564 and t̂23 '
0:72875, giving ex-post qualities q2 = q3 ' 0:4322 and q1 = q4 ' 0:5678.
Remarkably, both t̂12 and t̂23 do not depend on the function h. This makes

this kind of equilibria non-generic, since there is a last condition that has to be
met. The condition is that a t̂12�type household must be indi¤erent between
ranking school 2 �rst and ranking school 1 �rst, i.e.

2h(q1; t̂12)� 2h(q2; t̂12) = �

For instance, if we postulate a Cobb-Douglass human capital function
h(q; t) = q�t� with parameters �; � > 0 and we denote the family of all para-
meters (�; �;�) with �, and we endow this set with any nonatomic measure

41For this we assume that h(qn2 ;t)�h(q4;t)+�
h(qn3 ;t)�h(q4;t)+�

is increasing in t. It is enough to set � big
enough or to postulate a speci�c shape of h, for instance a Cobb-Douglass function.
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� such that �(�) = 1; we would obtain �(f(�; �;�) 2 � : 2q�1 t̂
�
12 � 2q�2 t̂

�
12 =

�g) = 0.

Conjecture 3 Generically, for any �xed distribution of types � we do not
have a sequential equilibrium with no sorting between some pair of good
schools.

7.4 Two-dimensional characteristics space

Under assumption A2, the willingness to pay for residence and schooling
in richer households is , ceteris paribus, higher than the willingness to pay
in poorer households. In that case, a two-dimensional type space is useful,
since it not only considers ability (our "type" t) but also wealth (denoted
by y). This subsection extends some results in considering a model with
two income levels, H and L, where H > L. Conditional on the income
level y, the ability distribution is � (tjy). We assume that there is positive
correlation between income and ability in such a way that � (�jH) FOSD
� (�jL). A mass � 2 (0; 1=2) of households has income H and the rest
have income L. In order to talk about sorting of abilities across schools, we
analyze each subpopulation (high- and low-income households separately).
The de�nitions in the paper can be used for each subpopulation. �j (tjy)
would denote the distribution of ability types among those attending school
j conditional on having income y. Accordingly, the ex-post school quality is
q̂j = �E�j(�jH)t+ (1� �)E�j(�jL)t.
Residence priorities
Regardless the mechanism we choose, the only prediction of the model is

that of full sorting for each subpopulation. There are cuto¤s aH � bH for
the H�income subpopulation and aL � bL for the L�income subpopulation
such that ability types below ay choose to reside in district 3 (and they
attend school 3), types between ay and by choose to live in district 2 (and
they attend school 2), and types above by choose district 1 for residence (and
they attend school 1). Cuto¤s are chosen so that q̂1 > q̂2 > q̂3, and rents
r1 > r2 > r3 = 0 serve to clear the residential market. Moreover, we have
bH < bL, since concavity of u implies u(H � r2)� u(H � r1) < u(L � r2)�
u(L � r1) (regardless the ability type, richer families have lower payo¤ loss
when spending more than poorer families do). For the same reason we have
aH < aL. In extreme cases we could have aL = �t or bH =t. If school 3 is
considered idiosyncratically bad (with direct utility loss �), rents r1 and r2
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would become higher, although not necessarily by an exact amount � as in
the baseline model.
Private school and no priorities
The variable of interest is the ability type that is indi¤erent between

attending the bad school (school 3) and paying for attending the private
school, denoted as t3 in the baseline model. Here, this cuto¤ di¤ers across
income types, obtaining tH3 < tL3 (again, regardless the ability type, richer
families have more willingness to pay than poorer families). With tH3 high
enough (with a su¢ ciently expensive private school or su¢ ciently low H),
single crossing conditions hold for both income types, so that ability cut-o¤
types ty characterize best responses. That is, y�income households rank
school 1 �rst if the ability type lies above ty, else they rank school 2 in �rst
position. Accordingly, for su¢ ciently expensive private schools, there exists
an equilibrium cut-o¤ type ~t < tH3 < tL3 that does not di¤er across income
types (~t = ~tH = ~tL). Being richer only buys families a way to avoid the bad
school, but it does not interfere with the assignment in good public schools.
A more interesting case arises when the private school is overly expensive

for poor families but a¤ordable for richer families. In an extreme illustrative
case we could assume tH3 = t: This could be done by properly increasing H
so that u(H � p) � u(H)�� (recall that a t�type household does not care
about school quality di¤erences). But then, all rich households face less risk
than poorer households since not being admitted in a good public school has
as a consequence being enrolled in the private school, as compared to the bad
school. Consequently, rich households would tend to bet for school 1 rather
than the safer option of school 2. In equilibrium we would have ~tH < ~tL < tL3 .
The baseline model predicted an "ability elitization" of school 1 (top ability
types get more chances at school 1), as compared to a scenario with no private
school. When we introduce income di¤erences and non quasilinear utilities,
there is also an "income elitization" e¤ect.

Proposition 8 Fix L and let � � h(�t; �t)� h(qmin; �t)]. If H is high enough,
there exists a lower-bound price p� and an upper-bound price p�� � p� such
that for any price p 2 [p�; p��] there exists an equilibrium in BM characterized
by cuto¤s ~tpH < ~t

p
L such that households with income y 2 fL;Hg rank school 1

�rst if their ability types are above ~tpy, and they rank school 2 in �rst position
otherwise. (~tpmax denotes the maximum equilibrium cut-o¤ in the game with
a p-priced private school in a scenario where H is set equal to L).
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Proof. For p high enough we have tL3 su¢ ciently high so that we make sure
that the cut-o¤ type ~tpL with income L does not choose the private school
against school 3 (u(L� p) << u(L)��). Setting H high enough, we make
sure that u(H � p) � u(H) � � and then tH3 = t: In both income types,
it can be checked that single crossing conditions apply: if an ability type
chooses to rank school 1 �rst, so does a higher ability type; if an ability type
chooses to rank school 2 �rst, so does a lower ability type. This allows us to
search for income-dependent cut-o¤ types ~tpH and ~t

p
L meeting G

p
H(~t

p
H ; ~t

p
L) =

GpL(~t
p
H ; ~t

p
L) = 0 where

Gpy(t̂H ; t̂L) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

h(qp1(t̂H ; t̂L); t̂y)� 2h(q
p
2(t̂H ; t̂L); t̂y)+

+maxfh(qp3(t̂H ; t̂L); t̂y)��;
h(qp(t̂H ; t̂L); t̂y) + u(y � p)� u(y)g
if ��(t̂H jH) + (1� �)�(t̂LjL) < 1=3
��(t̂H jH)+(1��)�(t̂LjL)

1�2[��(t̂H jH)+(1��)�(t̂LjL)]
h(qp1(t̂H ; t̂L); t̂y)�

1�[��(t̂H jH)+(1��)�(t̂LjL)]
1�2[��(t̂H jH)+(1��)�(t̂LjL)]

h(qp2(t̂H ; t̂L); t̂y)+

+maxfh(qp3(t̂H ; t̂L); t̂y)��;
h(qp(t̂H ; t̂L); t̂y) + u(y � p)� u(y)g
if ��(t̂H jH) + (1� �)�(t̂LjL) � 1=3

qpj (t̂H ; t̂H)�s are the school qualities when the price for the private school
is p if the cut-o¤ candidates are t̂H and t̂H . qp(t̂H ; t̂L) is the quality of the
private school under price p with these cuto¤s.
In case there exists a cut-o¤ equilibrium, it cannot be the case that ~tpH �

~tpL since we would have G
p
H(~t

p
H ; ~t

p
L) > GpL(~t

p
H ; ~t

p
L): We then show that an

equilibrium with ~tpH < ~t
p
L exists. On the one hand we have that G

p
H(t; �) < 0

if (1 � �)�
�
t̂LjL

�
< 1=2, and GpL(�; t) < 0 for any t̂H . Also, notice that if

��(t̂H jH)+(1��)�(t̂LjL) = 1=2 and t̂H > t then GpH(t̂H ; t̂L) = G
p
L(t̂H ; t̂L) =

1. Select one such pair (t̂H ; t̂L) with ��(t̂H jH) + (1 � �)�(t̂LjL) = 1=2.
Continuity of G�s almost everywhere and the intermediate value theorem
imply that in the segment with extremes (t; t) and (t̂H ; t̂L) there are two
points (tH ; f(tH)) and (g(tL); tL) such that G

p
L(tH ; f(tH)) = G

p
H(g(tL); tL) =

0. This de�nes two functions f and g which can be picked to be continuous
almost everywhere due to the continuity of G�s almost everywhere. We show
that f and g intersect at some point (~tpH ; ~t

p
L), a cut-o¤ equilibrium. There

is only one discontinuity of GpH around (t; t
m
L ) where (1 � �)�(tmL jL) = 1=2,

thus lim
tL!tmL

g(tL) = t. Notice that f(t) < tmL since G
p
L(t; t

m
L ) = 1. So when
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t̂H ! t (hence we approach �at line from the origin (t; t)); g lies at the right
from f . If we go to the 45 degree line, it is easy to observe that g lies at the
left from f on that line, since GpH(t; t) > G

p
L(t; t) 8t < t(1=2). Continuity of f

and g everywhere except for (t; tmL ) ensures the existence of an intersection
between f and g at some point (~tpH ; ~t

p
L). G

p
H(~t

p
H ; ~t

p
L) = GpL(~t

p
H ; ~t

p
L) = 0 by

de�nitions of f and g, therefore we have a cut-o¤ equilibrium below the 45
degree line (~tpH < ~t

p
L).

40



References

[1] Abdulkadiroglu, A., Che, Y.K. and Yasuda, Y. (2011): "Resolving Con-
�icting Preferences in School Choice: the Boston Mechanism Reconsid-
ered", American Economic Review 101, 399�410.

[2] Abdulkadiroglu, A. and Sönmez T. (2003): �School Choice: A Mecha-
nism Design Approach�, American Economic Review 93, 729-747.

[3] Bénabou, R. (1993): "Workings of a city: location, education, and pro-
duction," Quarterly Journal of Economics 108, 619�652.

[4] Bénabou, R. (1996): "Equity and e¢ ciency in human capital invest-
ment: the local connection", Review of Economic Studies 63, 237�264.

[5] Calsamiglia, C., Fu, C. and Güell, M. (2014): "Structural Estimation of
a Model of School Choices: the Boston Mechanism vs. Its Alternatives",
mimeo.

[6] Calsamiglia, C and Güell, M. (2014) "The Illusion of School Choice:
Empirical Evidence from Barcelona", CEPR Discussion Paper 10011.

[7] Cantillon, E. (2014): "Endogenous preferences and the role of the mech-
anism in school choice", mimeo.

[8] Chen, Y. and Sönmez T. (2006): �School Choice: An Experimental
Study�, Journal of Economic Theory 127, 202-231.

[9] de Bartolome, C.A.M. (1990): "Equilibrium and ine¢ ciency in a com-
munity model with peer group e¤ects", Journal of Political Economy
98, 110�133.

[10] De Fraja, G. and Landeras, P.. (2006): "Could do better: The e¤ec-
tiveness of incentives and competition in schools," Journal of Public
Economics, 90(1-2), 189-213.

[11] De Fraja, G. and Martínez-Mora, F. (2014): "The desegregating e¤ect
of school tracking", Journal of Urban Economics 80, 164�177.

[12] De Fraja, G. Oliveira, T. and Zanchi, L. (2010): "Must Try Harder:
Evaluating the Role of E¤ort in Educational Attainment," The Review
of Economics and Statistics, 92(3), 577-597.

41



[13] Durlauf, S.N. (1996): A theory of persistent income inequality. Journal
of Economic Growth 1, 75�93.

[14] Epple, D., Romano, R.E. (1998): Competition between private and pub-
lic schools, vouchers and peer group e¤ects. American Economic Review
88, 33�62.

[15] Epple, D. and Romano, R. (2003): Neighborhood schools, choice and
the distribution of educational bene�ts. In: Hoxby, C.M. (Ed.), The
Economics of School Choice, University of Chicago Press, Chicago, 227-
286.

[16] Epple, D. and Romano, R. (2008). "Educational Vouchers And Cream
Skimming," International Economic Review 49(4), 1395-1435.

[17] Epple, D., Romano, R. (2011): Peer e¤ects in education: a survey of the
theory and evidence. In: Benhabib, J., Bisin, A., Jackson, M.O. (Eds.),
Handbook of Social Economics 1B. Amsterdam, 1053�1163.

[18] Epple, Figlio and Romano (2004): "Competition between private and
public schools: testing strati�cation and pricing predictions�, Journal
of Public Economics 88, 1215-1245.

[19] Friedman, M. (1955). "The role of government in education". In Robert
Solow (ed.): Economics and the Public Interest. Rutgers University
Press.

[20] Gibbons, S., S. Machin and O. Silva, (2008) "Choice, Competition,
and Pupil Achievement�, Journal of the European Economic Associa-
tion 6(4), 912-947.

[21] Hoxby, Caroline M., 1999. "The productivity of schools and other local
public goods producers," Journal of Public Economics 74(1), 1-30.

[22] Hoxby, Caroline M. (2000): "Does Competition among Public Schools
Bene�t Students and Taxpayers?," American Economic Review 90(5),
1209-1238.

[23] Hoxby, Caroline M. (2003): "School Choice and School Productivity.
Could School Choice Be a Tide that Lifts All Boats?" In: Hoxby, C.M.
(Ed.), The Economics of School Choice, University of Chicago Press,
Chicago, 287-342.

42



[24] Hoxby, Caroline M., 2007. "Does Competition Among Public Schools
Bene�t Students and Taxpayers? Reply," American Economic Review,
American Economic Association, vol. 97(5), pages 2038-2055, December.

[25] MacLeod, B. and M. Urquiola (2009): �Anti-lemons and Educational
Quality�, NBER Working Paper 15112.

[26] MacMillan, R. (2004): �Competition, Incentives and Public School Pro-
ductivity�, Journal of Public Economics 88, 1871-1892.

[27] Miralles, A. (2008): School Choice, the Case for the Boston Mechanism,
unpublished manuscript.

[28] Musset, P. (2012): School choice and equity. Current policies in OECD
countries and a literature review. OECD Education Working Papers, 66,
OECD Publishing.

[29] Nechyba, T. (1999): School-�nance induced migration patterns: The case
of private school vouchers. Journal of Public Economic Theory 1, 5-50.

[30] OECD (2012), Equity and Quality in Education: Supporting Disadvan-
taged Students and Schools, OECD Publishing.

[31] OECD (2013), PISA 2012 Results: What Makes Schools Successful?
Resources, Policies and Practice, Volume IV, PISA, OECD Publishing.

[32] OECD (2014). "When is competition between schools bene�cial?" PISA
in Focus, 42.

[33] Ross, S. and Yinger, J. (1999). "Sorting and voting: A review of the lit-
erature on urban public �nance". In: Ceshire and Mills (eds.): Handbook
of Regional and Urban Economics, vol. 3., chapter 47. North-Holland,
Amsterdam.

[34] Roth, A. (1985) "The College Admissions Problem is not Equivalent to
the Marriage Problem," Journal of Economic Theory 36, 277-288.

[35] Rothstein, J. (2007): "Does Competition Among Public Schools Ben-
e�t Students and Taxpayers? Comment," American Economic Review
97(5), 2026-2037.

43



[36] Sacerdote, B. (2011): Peer e¤ects in education: how might they work,
how big are they and how much do we know thus far? In: Hanushek,
E.A., Machin, S.J., Wößmann, L. (Eds.), Handbook of the Economics of
Education 3, 249�277.

[37] Smith, K. and Meier, K. (1995). The Case Against School Choice: Pol-
itics, Markets, and Fools. Sharpe, New York.

[38] Tiebout, C. M., 1956. A pure theory of local expenditures. Journal of
Political Economy 64(5), 416-424.

44


