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Abstract

I study school assignment problems, focusing on two popular mechanisms: the Boston

Mechanism (BM) and Deferred Acceptance (DA). The former has been criticized re-

garding both e¢ ciency and fairness, particularly its treatment of naïve (non-strategic)

students. The latter has been suggested in its place, and has already replaced the former

in several cities. The formal critique of BM and support of DA were founded on the

assumption of strict priorities, i.e., schools rank every child so that there are as many

priority classes as there are students. In almost all cities where these mechanisms are

applied, however, the actual number of priority classes (e.g., walking-distance and sibling

in school) that may be used is orders of magnitude smaller than the number of students,

and tie-breaking lotteries are needed. Approximating this case by assuming only one

priority class, I show that BM outperforms DA according to several ex ante e¢ ciency

criteria. DA performs very poorly if all students share identical ordinal preferences over

schools. Simulations show that these analytical results extend to more realistic cases.

Finally, I suggest a simple modi�cation to BM, which, according to simulations, protects

naïve students while largely preserving its e¢ ciency properties.
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1 Introduction

The choice among allocation mechanisms has considerable consequences on e¢ ciency outcomes.1

In school choice, selecting an adequate assignment mechanism is particularly relevant due to the

importance of providing children with the kind of schooling parents desire for them. There is an

ongoing debate on what school assignment mechanism accomplishes with a more satisfactory set of

properties regarding simplicity, e¢ ciency and fairness. Most of this debate has centered its attention

on two popular methods: the Boston Mechanism (BM) and Deferred Acceptance (DA).

Criticisms against BM have increased in recent years. BM is not strategy-proof. Consequently,

parents are forced to play a cumbersome game. This raises concerns about e¢ ciency (the strategic

interaction may have pervasive e¤ects, and agents may lack su¢ cient information to design a best

response) and fairness (truth-tellers can do poorly).2 DA has been suggested in its place, since it is

strategy-proof and it relies only on ordinal preferences.

DA has replaced BM in several major districts such as Boston, MA and Seattle, WA. Nevertheless,

variations of BM are still applied in other districts, for instance Denver, CO, Minneapolis, MN, and

Cambridge, MA.3 The purpose of the present paper is to note some positive aspects of BM that

may temper the judgement against it, and to provide some rationale to its persistence.

A school usually has to prioritize over students if it cannot provide a slot to each of them. The

formal analysis which has concluded against BM has assumed that each school ranks every child so

that there are as many priority classes as there are students. This eliminates any uncertainty about

which students would be accepted in the event the school were overdemanded. I refer to this context

as the strict-priority case.

However, strict priorities constitute a strong assumption in school choice. In Boston, each school

1This has been documented in spectrum auctions and in the contracting-out of publicly provided services, among

other examples.
2 In BM, Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006) report that some parents behave strategically while

some others are naïve (truth-tellers). That is, some parents are in an advantageous position to obtain necessary

information and to calculate optimal strategies. Following this concern about fairness, Pathak and Sönmez (2008)

show that perfectly strategic parents have an advantage over naïve (truth-telling) parents that can be accounted for

as if all schools gave priority to strategic parents.
3Other systems are also in use. For instance, Providence, RI, allows parents to rank two of the district�s schools.

Each school reserves 75% slots for walking-zone students (those who live close enough to the school) who point at it

as �rst choice, 25% for non-walking-zone students who rank the school �rst, and 5% for walking-zone students who

rank it in second position. In each segment, priority is given to students with a sibling attending the school, and a

lottery serves to break ties.
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prioritizes over students according to four categories: 1) sibling�s presence plus walking zone (resi-

dence close enough to school), 2) sibling only, 3) walking zone only, and 4) none. These four priority

levels are also used in many other districts, sometimes jointly with readjustments that balance var-

ious socio-demographic variables across schools. Each of the three zones the Boston Public School

authority divides the district into had an average of more than 1,100 elementary school applicants

in the 2001-2002 assignment4 (higher numbers are found in middle schools). Cambridge processed

431 applications in its most recent kindergarten assignment. Obviously, one cannot generate strict

priorities over so many students with only four categories.

The few-categories reality of school choice is commonly referred to as "weak priorities." The no-

priority assumption is an alternative, analytically tractable case that proxies such a scenario. Under

no priorities, all students belong to the same priority class. I compare BM and DA based on this

assumption. In my calculations, I restrict attention to large economies with a continuum of students.

I �nd that BM obtains the same standard e¢ ciency properties as DA, plus a set of additional ex

ante e¢ ciency properties. I also present simulations suggesting that BM is ex ante better than DA

in the utilitarian sense even after the introduction of naïve students and weak priorities. I explain

my results in more detail.

In both BM and DA, each student (or student�s parents) is requested to report a complete

ranking of the schools. The assignment procedure follows then several rounds. In each round,

each student�s application is considered at the highest-ranked school among the ones that have not

rejected her yet. Rejections from a school occur when there are more applicants than slots the school

o¤ers. Acceptances and rejections are determined by school priorities and tie-breaking lotteries when

needed. The di¤erence between BM and DA is that an accepted student in BM keeps her assigned

slot and is removed from further rounds. That is, acceptances are de�nite. In DA, an accepted

student is only tentatively accepted and must be reconsidered again in the next round unless all

students were accepted in the previous one.

De�nite acceptances entail an opportunity cost. If a student�s application is considered for some

school at some round, several slots from other schools will be unavailable in the next round. This cost

is not present in DA, which is consequently strategy-proof, whereas BM is not. In a deterministic

context (strict priorities), the implied strategic game in BM harms e¢ ciency, and DA performs

better. However, when priorities are coarse and lotteries are most certainly needed to break ties,

4Data from Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006).
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the students�intensity of preferences over schools matter,5 and DA overlooks those.

I propose a version of BM that incorporates Round-wise Tie-Breakers. That is, an independent

tie-breaking lottery is run each round. Accordingly, each of these rounds assigns slots in a way that

can be replicated by a competitive (pseudo)market, where the price for a slot at a school equals its

considered applications/remaining slots ratio. I show that this version of BM is ex post e¢ cient and

has several ex ante e¢ ciency properties that DA does not meet.6

This is trivially robust to the introduction of weak priorities under the following su¢ cient condi-

tions: 1) each school gives priority to a limited number of students (fewer than its capacity); and 2)

each student with priority at some school prefers that school the most. These conditions are likely

satis�ed in the priority levels given by the presence of siblings.

While I �nd that DA is ordinally e¢ cient, I also show that ordinal and ex post e¢ ciency are

equivalent concepts with a continuum of students. Thus, DA�s ordinal e¢ ciency does not imply

superiority over BM. Indeed, DA performs very poorly if students�ordinal preferences are perfectly

correlated. Precisely because DA is strategy-proof, it cannot make any distinction among students if

all of them share identical ordinal preferences. In such a case, any anonymous mechanism�s induced

random assignment weakly ex ante Pareto-dominates the one given by DA.

I use simulations to study some scenarios where analytical results are hard to obtain. These new

conditions tend to worsen the chances of BM against DA. They include weak priorities, correlation

of students�von Neumann-Morgenstein (vNM) valuations to priorities, and naïve, truth-telling stu-

dents. I �nd that BM outperforms DA in utilitarian ex ante e¢ ciency terms even when these three

problems are present at the same time. However, naïve students are better o¤ under DA.

The concern about naïve students is relevant from a fairness perspective. Disadvantageous

socioeconomic conditions are likely related to the lack of both information and time necessary to

elaborate a sophisticated strategy. For naïve students, the most striking loss comes from the fact

that they rank second-best choices in second position (and third-best schools in third position, and

so on) when these schools might not have available slots at the corresponding assignment round. I

suggest a corrective device on reported rankings at BM that would considerably alleviate this burden

5There are interesting attempts to empirically measure the intensity of these preferences (e.g. Black, 1999).
6A mechanism is ex post e¢ cient if it only yields Pareto-e¢ cient �nal assignments. It is ex ante e¢ cient if it only

yields Pareto-e¢ cient random assignments. An ordinal mechanism is ordinally e¢ cient if there is no other feasible

ordinal random assignment that �rst-order stochastically dominates for all students any of the random assignments

induced by the mechanism. ex ante e¢ ciency implies ordinal e¢ ciency, which implies ex post e¢ ciency (Bogomolnaia

and Moulin, 2001). ex ante e¢ ciency is the most desirable property.
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to naïve students. Corrected reported rankings would remove schools with no remaining slots to

last positions. When all students are sophisticated, this correction is innocuous. Simulations show

that this device works �ne for naïve students while largely preserving overall e¢ ciency.

Interest in school choice mechanisms has kept growing since the seminal paper by Abdulkadiro¼glu

and Sönmez (2003). The authors note that BM is not strategy-proof and suggest DA as one possible

alternative. This idea has been defended since then from several fronts: theoretical (Abdulkadiro¼glu,

Pathak and Roth, 2005; Abdulkadiro¼glu, Pathak, Roth and Sönmez, 2005; Ergin and Sönmez, 2006),

experimental (Chen and Sönmez, 2006)7 and empirical (Abdulkadiro¼glu, Pathak, Roth and Sönmez,

2006). The most striking theoretical result in this line is provided by Ergin and Sönmez (2006): if

schools have strict priorities, DA weakly Pareto-dominates BM.

Two recent papers are less optimistic about DA.8 Erdil and Ergin (2008) notice that DA may

lead to ex post e¢ ciency losses when one relaxes the strict priority assumption. Abdulkadiro¼glu,

Che and Yasuda (2008) adopt a new viewpoint in this debate to which I also subscribe: introducing

information about cardinal utilities into the assignment is important when priorities are not strict.

Abdulkadiro¼glu et al. propose a new mechanism called Choice-Augmented Deferred Acceptance

(CADA), which is a compromise between DA and BM. It maintains strategy-proofness with respect

to revealed ordinal preferences, while it uses some information on preference intensities. This mecha-

nism obtains the same e¢ ciency properties BM achieves and DA does not. Since there are no major

e¢ ciency di¤erences between BM and CADA in the scenarios I formally analyze, I discuss them

in the appendix. I �nd scenarios in which both BM and CADA lead to the same induced random

assignment. In e¤ect, BM can be conceived as an appropriately extended CADA.

The results found here apply to several assignment problems apart from school choice. Those

include residence assignment in colleges, and task/job allocation in �rms and other institutions. The

no-priority case shows lessons in all of these problems, despite the di¤erences among them.

In Section 2, I brie�y describe the two mechanisms I analyze in this paper. Section 3 presents

basic notation and e¢ ciency concepts. Section 4 shows the e¢ ciency properties of DA. In Section

5, I argue that BM is ex post e¢ cient and satis�es ex ante e¢ ciency properties that DA does not.

7 In constrained school choice experiments, where students must submit limited lists of ranked schools, Calsamiglia

C., Haeringer G. and Klijn F. (2008) show that DA might not outperform BM as clearly as it does when students are

allowed to submit complete rankings.
8Manea (2008) also questions the use of Random Serial Dictatorship (RSD), ex ante equivalent to DA in the

scenarios I formally analyze. In many scenarios, RSD is asymptotically not ordinally e¢ cient. He proposes the

ordinally e¢ cient Probabilistic Serial (PS) mechanism (Bogomolnaia and Moulin, 2001) instead. Further research

could compare BM to PS.
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In Section 6, I present simulations that test the robustness of my �ndings. Section 7 concludes. A

discussion of CADA and the proofs are presented in the appendix.

2 The mechanisms with no priorities

2.1 Boston Mechanism, with Round-wise Tie-Breakers (BM)

In this version of BM, students report their rankings of schools. The assignment is computed in

several rounds. For each possible round t, an independent fair lottery Lt assigns a real number

between between 0 and 1 to each student. No two students may obtain the same number. If no

corrective device is applied to protect naïve students, the assignment works as follows.9 In the �rst

round, the mechanism de�nitely assigns each student to her �rst-ranked school, in increasing order

of lottery numbers according to L1, until either school capacity is fully used or no more students

rank the school as �rst choice. In round t, all students that were rejected at t� 1 apply to their t-th

ranked school. Then the mechanism de�nitely assigns these students in increasing order of lottery

numbers according to Lt, again until remaining capacity is ful�lled or there are no more students to

assign to that school. The process ends in a �nite number of rounds, when all students are assigned.

In real life applications of BM, students obtain a unique lottery number upon application. The

modi�cation I introduce, RTB, is necessary in the following sense: with a unique lottery number, two

students with identical preferences among schools with remaining slots in some round t might rank

them di¤erently. Conditional on being rejected from di¤erent schools, the student who was rejected

from the least popular one must have a bad lottery number. Hence she faces lower assignment

probabilities (higher "prices") than the other student. By running an independent lottery each

round, I make sure that students are facing the same "prices" each round. I show that ex post

e¢ ciency is ensured in this modi�ed BM.

2.2 Deferred Acceptance (DA)

In DA, students report their rankings of schools. An even lottery assigns a real number between 0

and 1 to each student. Again, each student obtains a di¤erent number. The assignment is computed

in several rounds. In the �rst one, the mechanism tentatively assigns each student to her �rst-

ranked school, in increasing order of lottery numbers, until either school capacity is reached or no

9The theoretical results of this paper are based on the assumption that all students are sophisticated. The corrective

device will not be analyzed until Section 6.

6



more students rank the school as �rst choice. In each remaining round, each student applies to

her (reportedly) most-preferred school among the ones that have not rejected her. The mechanism

compares all students who are applying to the same school, and tentatively reassigns students in

increasing order of lottery numbers, again until the capacity limit is reached, or no more slots are

demanded. The process ends when all students are assigned.

The fact that acceptances are tentative is what makes DA strategy-proof. In BM, suppose that a

student moderately prefers school 1 to school 2, and yet knows that school 1 is much more demanded

than school 2. She may put school 2 ahead in her reported ranking. Since slots are de�nitely assigned

each round with BM, applying to one school has an oppotunity cost at other schools. This does not

happen with DA, because all slots are again available in each round.

3 Notation and concepts

There is a �nite set S of J schools S = f1; :::; Jg. For simplicity I assume that there is no outside

option.10 Each school j has capacity measure �j > 0. The total sum of capacities across schools

is 1. Let ~� = (�1; :::; �J). There is a measure 1 of student types. Each type is associated with

a von Neumann-Morgenstein (vNM) utility vector v = (v1; :::; vJ) 2 V � �J�1.11 The set of

student types, V , is equipped with a (full support) probability measure over sets of student types,

denoted as m : B(V ) ! [0; 1], where B(V ) is the Borel-algebra associated with V . I assume that

m(fvg) = 0 8v 2 V though this is not necessary for some of the results. The pair (m;~�) de�nes the

economy, and E denotes the set of all economies satisfying the conditions above. I use the function

o : fv 2 V : @i; j 2 S; vi 6= vjg ! �(S) to indicate the ordinal preferences associated with students�

types, where �(S) is the set of all permutations over S. oj(v) is the j-th highest element in v.

A set of fair lotteries assigns to each student her own element e � (e1; :::; eN ) in the lottery set

L = [0; 1]N , where N is the number of lotteries the mechanism needs to break all possible ties. No

two students hold the same lottery element. For the purposes of the present analysis, it is enough

with N = J .12 All components of e are independent from each other. The set L is accompanied by

a uniform measure l such that, for any measurable subset �L � L, l(�L) is the volume of �L. For any

such �L, the conditional probability measure of student types among students holding their lottery

10The results here presented could easily be extended to include that option.
11Rescaling the type space into the J-dimensional simplex is innocuous in that it does not alter equilibrium strategies.
12That is the maximum number of rounds BM needs to assign all students. Not all lottery element components are

necessarily used in the assignment. For instance, DA only uses e1.
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elements in �L is equivalent to m. One can think of a student as a pair (v; e) 2 V � L.

An assignment is a measurable function a : V � L! S. An assignment is feasible at (m; l;~�) if

for any school j, the (product) measure m� l of students who are assigned to that school equals �j .

A random assignment is a measurable function q : V ! �J�1. A random assignment q is feasible

at (m;~�) if
R
V
q(v)m(dv) = ~�. By the Birkho¤ - von Neumann theorem, any random assignment

can be implemented as a lottery over assignments. Each v-type student�s expected payo¤ from the

random assignment q(�) is equal to q(v) � v, where qj(v) is the probability that a v-type student is

assigned to school j. A random assignment is ordinal if for any v; ~v 2 V such that o(v) = o(~v), we

have q(v) = q(~v). A random assignment is cardinal if it is not ordinal.

A feasible random assignment is ex post e¢ cient at (m;~�) if any assignment from it is Pareto-

optimal among all feasible assignments at (m; l;~�). That is, for any possible lottery outcome, the

resulting assignment is Pareto-optimal. A feasible random assignment is ex ante e¢ cient at (m;~�) if

there is no other feasible random assignment at (m;~�) that provides each student type with weakly

higher expected payo¤ and a positive-measure set of types obtains strictly higher payo¤.13 A feasible

ordinal random assignment q(�) is ordinally e¢ cient at (m;~�) if there is no other feasible ordinal

random assignment ~q(�) that �rst-order stochastically dominates q(�) for any student type v.14

For ordinal random assignments, ex ante e¢ ciency implies ordinal e¢ ciency, which implies ex

post e¢ ciency. The converse is not always true (Bogomolnaia and Moulin, 2001). For cardinal

random mechanisms, ex ante e¢ ciency implies ex post e¢ ciency, and the converse is not always

true.

A �nal notion of e¢ ciency is based on a particular subset of schools. A random assignment q(�) is

ex ante e¢ cient within a set S0 � S of schools if, for any other feasible random assignment ~q(�) that

keeps assignment probabilities unchanged with respect to the schools in SnS0, ~q(�) does not provide

each student type with weakly (and strictly in a positive-measured set of types) higher expected

payo¤ than q(�).

For a �xed economy (m;~�) 2 E, an (anonymous) mechanism M consists of a �nite strategy space

� for each student type and a functional ~MM : �V � L ! A, where A is the set of all measurable

functions � : � � L ! S. Each function of this set assigns students to schools depending on their

13The literature on mechanism design refers to this as interim e¢ ciency, since agents have already learned their

types at this point. I follow the previous school choice literature in this de�nition of ex ante e¢ ciency (for instance,

Abdulkadiro¼glu, Che and Yasuda, 2008).
14First-order stochastic dominance arises when

Pj
i=1 ~qoi(v)(v) �

Pj
i=1 qoi(v)(v) for any j 2 f1; ::; Jg; and ~q(v) 6=

q(v).
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strategies and their lottery elements. Any mechanismM has an associated random mechanism �M :

�V ! R, where R is the set of all measurable functions � : � ! �J�1, such that �M = El( ~MM ).

A (pure) strategy pro�le given M is a measurable function � : V ! �. A random mechanism �M

is feasible at (m;~�) if for any pure strategy pro�le � there is � 2 R such that �M (�) = � andR
V
�(�(v))m(dv) = ~�. A mechanism is feasible if its associated random mechanism is feasible.

A feasible mechanism M induces (in pure strategies) a random assignment q at (m;~�) if given

that economy and that mechanism there is � 2 R and a pure strategy Nash equilibrium pro�le ��

such that �M (�
�) = � and �(��(v)) = q(v) for any v 2 V . A mechanism M is e¢ cient at (m;~�)

in any of the senses depicted above if any random assignment q(�) induced by the mechanism at

(m;~�) is e¢ cient in the same sense. A mechanism is ordinal at (m;~�) if it induces ordinal random

assignments only.

4 DA is ordinally e¢ cient, yet...

DA with a continuum of students is shown to be strategy-proof by Abdulkadiro¼glu, Che and Yasuda

(2008).15 While DA is ex post Pareto-dominant among stable mechanisms if schools have strict

priorities (Gale and Shapley, 1962), DA may yield ex post e¢ ciency losses when schools have weak

priorities (Erdil and Ergin, 2008). Erdil and Ergin (2008) provide the mechanism designer with an

improved mechanism that guarantees ex post e¢ ciency among stable assignments. The drawback is

that ex post e¢ cient-stable assignments are Nash-implementable only, so the improved mechanism

is not necessarily strategy-proof.

My �rst result indicates that DA is ordinally e¢ cient if there is a continuum of students and

schools have no priorities. This is shown by means of proving its equivalence to the Probabilistic

Serial (PS) mechanism. The latter is de�ned as a random assignment mechanism, via the "cake-

eating" algorithm with equal speeds. Students are requested to report their rankings over schools. At

each moment of time, each student "eats" shares of a slot at her reportedly most-preferred available

school at speed 1. A school becomes unavailable when the measure of eaten slots equals the school

capacity. At time 1, all schools have become unavailable, and the process ends. The assignment

probability of a student to a school is the total share of a slot at that school the student has eaten.

PS is ordinally e¢ cient, as shown by Bogomolnaia and Moulin (2001), but it is not always

strategy-proof. Kojima and Manea (2007) have shown that PS is strategy-proof if schools�capacities

15Dubins and Freedman (1981) and Roth (1982) show it for a �nite number of students.

9



are high enough.

Proposition 1 With a continuum of student types and no school priorities, DA and PS are ex ante

equivalent.

Proof. See appendix.

Corollary 1 With a continuum of agents and no school priorities, DA is ordinally e¢ cient.

This result has also been found by Che and Kojima (2008),16 for the asymptotic case where the

number of students (and also of school slots) grows unboundedly large. The proof of Proposition

1 is fairly simple. With a continuum of students, Abdulkadiro¼glu, Che and Yasuda (2008) have

shown that any assignment induced by DA can be characterized by a vector of cuto¤s, one for each

school. A student is assigned to a school she applies to (after having been rejected at other preferred

schools) if and only if her assigned lottery number is lower than the school�s cuto¤. Likewise, one

could characterize the random assignment induced by PS as a vector of "cake-end" times,17 one

for each school. Each school becomes unavailable at its "cake-end" time. The proof concludes by

observing that both cuto¤s and "cake-end" times are the same.

For the defenders of purely ordinal mechanisms, this result is very positive. Ordinal e¢ ciency is

the most one can demand from a mechanism that relies on (truly reported) ordinal preferences only.

However, I provide a second result that neutralizes the importance of ordinal e¢ ciency relative to ex

post e¢ ciency. This is related to Manea (2008), which states that Random Serial Dictatorship (ex

ante equivalent to DA in the present context) is ordinally e¢ cient if and only if ex post e¢ ciency

implies ordinal e¢ ciency.

Theorem 1 With a continuum of students and no priorities, an ordinal mechanism is ordinally

e¢ cient if and only if it is ex post e¢ cient.

Proof. See the appendix.

BM is not an ordinal mechanism, since two student types with identical ordinal preferences may

play di¤erent strategies in equilibrium. Thus, BM cannot be compared to DA in ordinal e¢ ciency

terms. In the light of Theorem 1, however, a comparison can be made. Ordinal e¢ ciency does not

claim any superiority for DA over BM, if BM is ex post e¢ cient.

16See Kesten (2007) for a related result in housing allocation problems.
17Che and Kojima (2008) use the term "expiration dates".
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Abdulkadiro¼glu, Che and Yasuda (2008) show that, under the full support assumption, DA

cannot be ex ante e¢ cient within any subset of more than two schools.18 Besides, DA does not

make any use of the intensity of students�preferences. The following result strongly illustrates to

which extent this may lead to e¢ ciency losses. Let us say that a mechanism M is abysmal in an

environment (m;~�) if for any other (anonymous) mechanism, all of its induced random assignments

at (m;~�) weakly ex ante Pareto-dominate any random assignment induced by M at (m;~�).

Proposition 2 With a continuum of students with identical ordinal preferences, and no priorities,

DA is an abysmal mechanism.

Proof. See the appendix.

This interesting result is an extension of Theorem 6 in Abdulkadiro¼glu, Che and Yasuda (2008),

which states that CADA ex ante Pareto-dominates DA in those scenarios.

Proposition 2 goes further than the aforementioned authors�result by showing that, when in-

formation on ordinal preferences is not useful, any (anonymous) cardinal mechanism, no matter

how badly designed, leads to (weak) ex ante payo¤ improvements for all students, as compared to

ordinal mechanims. The underlying assumption (identical ordinal preferences) is not that far from

real scenarios. The concern about observable quality di¤erences across schools is precisely one of

the motivations for school choice programs.19

5 BM obtains good ex ante e¢ ciency results

I next show that the Boston Mechanism satis�es several ex ante e¢ ciency properties that DA may not

meet. Given m, ~� and an (anonymous) mechanism M , a school j is overdemanded in an equilibrium

�� if, denoting �� = �M (�
�), there is no pure strategy & 2 � such that ��j (&) = 1. A school j is

underdemanded if it is not overdemanded. In words, a school is overdemanded in equilibrium if

there is no means by which a student could obtain sure assignment at that school, given the other

students�equilibrium strategies.

Let a (pure) ranking strategy for a v-type in BM be a vector r(v) 2 �(S).20 Let rj(v) be

18The authors show that there is a positive-measured set of student types who obtain positive assignment probability

for any school, under DA. Consider any set of three schools. These students could always trade assignment probabilities

for these schools among them in a mutually pro�table way.
19For instance, under the No Child Left Behind regulation, school districts are obliged to provide parents with

alternative choices, if the school their children are attending to do not meet minimum quality standards.
20Recall that �(S) is the set of all possible permutations on f1; :::; Jg.
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the school that a v-type student ranks in j-th position. A pure strategy BM Nash equilibrium

r� : V ! �(S) exists (see Theorem 2 in Mas-Colell, 1984). It follows from the de�nition above that

a school j is overdemanded in a BM equilibrium r� if m(fv 2 V : r�1(v) = jg) > �j .

Proposition 3 For any �xed m and ~�, BM satis�es the following properties:

1) It is ex post e¢ cient.

2) It is ex ante e¢ cient within the set of overdemanded schools.

3) It is ex ante e¢ cient if there is only one underdemanded school.

4) It is ex ante e¢ cient if J = 3, all students have the same ordinal preferences o(v) = (1; 2; 3)

8v, and m
�n
v 2 V : v2 >

P
j vj�j

o�
� �2.

Proof. For conditions 1, 2 and 3, see the appendix. Condition 4 follows from Lemma 1 (also in

the appendix).

The reader will observe that CADA meets all these conditions as well, as shown by Abdulka-

diro¼glu, Che and Yasuda (2008). The appendix provides a wider comparison between BM and

CADA.

The idea of condition 2 is that there is a "market logic" in r�1 for those who choose overdemanded

schools as �rst options. For each overdemanded school there is an "equilibrium price" which equals

the demand/supply ratio. The proof follows from constructing the proper environment in which

Hylland and Zeckhauser�s (1979) (symmetric) pseudomarket mechanism (PM),21 which is ex ante

e¢ cient, reaches the same random assignment as BM does, with respect to overdemanded schools.

ex post e¢ ciency arises partly because of Round-wise Tie-Breakers. RTB separates rounds so

that individual assignment probabilities in further rounds are not a¤ected in any relevant way by

individual choices in previous rounds. Each separate round follows the same "market logic" with the

remaining slots as the �rst round does with all of them. We obtain ex ante e¢ ciency within each

set of schools that become full at the same round. Additionally, no pro�table exchanges can come

across rounds: if a student prefers an underdemanded good to an overdemanded one, she would never

rank the overdemanded school �rst. Thus, she would not have probability shares of overdemanded

schools. All this results in acyclicity: ex post, it is not possible to design a Pareto-improving trading

cycle.

21 In the symmetric PM, each student is given a budget of one "fake" money unit, which she spends in buying as-

signment probabilities. There is at least one pseudomarket price equilibrium. It follows that a school is overdemanded

in PM equilibrium if its corresponding price is higher than 1.
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This argument does not imply that BM is ex ante e¢ ciency. A student may optimally choose an

underdemanded school, but be willing to trade probability shares of it with students who apply to

other underdemanded schools in further rounds. Relative prices vary across rounds. For instance,

two underdemanded schools may become full in the very next round, with di¤erent demand-to-

remaining-capacity ratios. This variation of relative prices across rounds explains the lack of ex ante

e¢ ciency.

Condition 3 is proven through the following remark, which is a corollary from the proof for

condition 2. Let QM (m;~�) denote the set of (pure strategy) equilibrium random assignments that

mechanism M induces given the measure m and the capacities ~�. Let QM (m;~�; s) denote the set of

equilibrium random assignments that mechanismM induces given the measure m and the capacities

~� where there are exactly s underdemanded schools in equilibrium.

Remark 1 Fix m and ~�. Then QBM (m;~�; 1) = QPM (m;~�; 1).22

A �nal note on Proposition 3 makes special reference to popular schools. A school j is popular if

m (fv 2 V : vj = maxi2S vig) > �j .23 Both in BM and in CADA, any equilibrium is characterized

by the fact that all the popular schools are overdemanded. Hence, both BM and CADA are always

ex ante e¢ cient within the set of popular schools. If there are more than two popular schools, DA

cannot possibly be ex ante e¢ cient within that set.

The reader may wonder if Proposition 3 holds after the incorporation of weak priorities. Ad-

mittedly, priorities alter incentives in such a way that BM�s "nondiscriminatory market" logic fails.

Simulations presented in next section cope with that problem, since a formal analysis is not feasible.

I nevertheless comment on a kind of priority level that resembles sibling priority.

Remark 2 In a scenario with weak priorities, suppose that: 1) for each school, the measure of

students with priority there is lower than the capacity the school o¤ers; 2) there is a perfect match

between each student a school gives priority to and the school the student�s parents most prefer.

Then, BM still meets properties 1 through 3 in Proposition 3.

Both assumptions are plausible in the sibling priority case.24 Under these assumptions, each

student with priority status is surely placed at her most-preferred school and removed from the

22See the proof of Lemma 1 (in the appendix).
23Notice that this concept is not linked to any speci�c equilibrium or mechanism.
24Again citing data from Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006): only 21% of assigned students in

Boston elementary schools had either sibling or sibling-walk priority, as of 2001-02.
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mechanism. The real assignment problem involves the remaining students without priority. It

follows that all the results presented here are robust to the inclusion of this kind of priorities.

6 Simulations

Although some qualitative e¢ ciency properties have been compared and discussed across the three

mechanisms, they tell us little about the quantitative ex ante e¢ ciency gains that BM can achieve

relative to DA, if any. Additionally, a natural question concerns whether my results are robust to

the inclusion of weak priorities, beyond the conditions in Remark 2. Finally, it is interesting to

consider scenarios where a portion of students�parents are naïve truth-tellers.25

All these questions cannot be directly addressed via analytical tools. Therefore, I have designed

simulations that compute (utilitarian) welfare measures for all three mechanisms.26 I have considered

di¤erent scenarios, varying the number of schools, the capacity of each (all schools with identical

capacity), the correlation of vNM valuations among students, whether there are naïve students

or not, whether schools have priorities or not, and whether valuations are correlated with school

priorities or not.

The �rst subsection gives results when no priorities or naïve agents are considered. The second

subsection analyzes scenarios with naïve agents. The third includes priorities, with and without

naïve students. Additional simulation results comparing BM to CADA are shown in the appendix.

6.1 No priorities, no naïve students

I consider scenarios with 4, 5 and 6 schools, and 20, 30 and 40 slots per school.27 The total number

of students equals the total number of slots. Each student i is independently endowed with a private

vNM valuation vector vip that is drawn from the J-dimensional uniform distribution. There is a

common value vector vc drawn from the same distribution. Student i�s �nal valuation vector is

25Naïveté might be understood as the result of a scarcity of time and information, rather than a lack of ability.

Wealthier parents might have more time to gather useful information and to design a strategic school choice application.

This raises questions about fairness (Abdulkadiro¼glu, Pathak, Roth and Sönmez, 2006; Pathak and Sönmez, 2008).
26All codes can be found at http://people.bu.edu/miralles.
27 In Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006) data, there were 40 incoming students per Boston elemen-

tary school, as of 2001-2002. In Cambridge, MA, as of the 2008-09 kindergarten assignment, the average capacity

was around 33 vacant slots per institution. Abdulkadiro¼glu, Che and Yasuda (2008) focus on the 5 school - 20

students/school case. Some of my �gures follow their lead so as to make results comparable.
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via = avc+(1�a)vip, where a 2 f:1; :3; :5; :7g. a proxies the correlation among all students�valuation

vectors. After having obtained all valuation vectors, I rescale them to the simplex.

I compute pure strategy Nash equilibria of BM (also of CADA) through iterated best responses,

where truth-telling is the starting point. I acknowledge the possible existence of multiple Nash

equilibria.28 To avoid limit cycles, I establish rigidities by which randomly chosen students may

keep their strategies unchanged between iterations even if they wish to switch to a new strategy. If

no Nash equilibrium is found after 2,000 iterations, convergence is called when the strategy matrices

(each one with dimension equal to the number of students times the number of schools) between two

consecutive iterations have at least 98% coincidences. With �ve schools, this percentage means that

at most 5% students are willing to change their strategies. In computing BM random assignments

given the students�chosen strategies, I take a continuum approach that approximates assignment

probabilities by considering a student as if she were an atom of students. This method is less time-

consuming than the one of averaging assignments over a big sample of lottery draws. Analogous

time savings occur when DA random assignments are calculated via the cuto¤s characterized by

Abdulkadiro¼glu, Che and Yasuda (2008).

After having computed Nash equilibria and their corresponding random assignments, I calculate

the mean of ex ante payo¤s across all students, which accounts as my measure for utilitarian ex

ante e¢ ciency. I proceed likewise for 100 independent draws of all students�vNM valuations (plus

common value component), and I average the welfare measures over that sample of 100 draws, in

order to obtain a �nal welfare estimate.29

Figures 1 and 2 illustrate the di¤erences in computed welfare between BM and DA. In both

�gures, it is apparent that the relative welfare gain stemming from a switch from DA to BM is

always positive and increasing in the correlation among students�valuation vectors.30 The greater

this correlation, the more similar ordinal preferences become across all students, and the worse DA

performs. Figure 1 suggests that welfare gains positively depend on the number of schools, as more

schools imply broader strategic possibilities.31 Figure 2 shows that these gains are not very sensitive

to a variation in the capacity of each school.

28This problem may not be present in plausible scenarios (Pathak and Sönmez, 2008).
29After 4000 iterations, the process had not converged in a 2% of cases in BM, and a 2.92% in CADA. Respective

average convergence ratios, conditional on not convergence, are 93.01% and 92.99%.
30Gains follow the same trend and similar rates as the ones reported in a previous version of Abdulkadiro¼glu, Che

and Yasuda (2008), where they compare CADA to DA.
31A preliminary 75-draw simulation with seven schools tends to con�rm this trend: BM obtains a 4.94% welfare

increase with respect to DA, in a 20 students/school scenario when a = :7.
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6.2 No priorities, naïve students

I calculate equilibria32 and welfare again, under the assumption that half the students are naïve

truth-tellers.33 Additionally, I have computed welfare when the following corrective device is applied
32After 2,000 unsuccessful iterations, convergence is called after observing 99% coincidences between consecutive

iterations. After 4000 iterations, the process had not converged in a 1.14% of cases in BM, and a 2.28% in CADA.

Respective average convergence ratios, conditional on not convergence, are 97.52% and 96.45%.
33According to Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006), 35.7% parents ranked two overdemanded Boston

elementary schools in the �rst two positions, in the 2001-02 assignment. This is a naïve strategy, since the second
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to protect naïve students. Whenever a student applies to a school that has no remaining slots, that

school is removed to the last position of her ranking, and all schools ranked below gain one position

in that ranking. Hence, the student applies to the next-ranked school.34
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Fig. 3: % Welfare gains BM-DA, 5 schools, 20 students/school.
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Fig. 4: Naïve students�% welfare di¤erences BM-DA, 5 schools, 20 stud./sch.

choice is wasted. A substantially but not overwhelmingly higher amount of naïve students represents a bad scenario

for BM. If all students were naïve, the outcome of BM would be ex post e¢ cient.
34For the corrected-BM case, the sample is constituted by 75 valuation draws.
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Figure 3 shows that when half the students are naïve truth-tellers, BM�s relative welfare gains

with respect to DA are cut approximately by half. Still, utilitarian e¢ ciency gains subsist and are

increasing in the correlation among students�valuations. The protective device for naïve students has

an additional e¢ ciency cost. However, it becomes less relevant as the correlation among students�

valuations increases.

Figure 4 shows that naïve students are punished more in BM than in DA, quite signi�cantly

when the correlation among students�vNM vectors is high. The idea is that ordinal preferences

tend to coincide among students, and naïve students rank their actual second-best school in second

position, their actual third-best school in third, and so on. Some of these options are likely to be

overdemanded, in which case naïve students are wasting their choices. This does not happen in DA,

since acceptances in each round are tentative. The corrective device shows its e¤ectiveness: with

a = :7, naïve students�welfare losses are reduced from near 4.5% to less than 1.25%.

That BM is more utilitarian-e¢ cient than DA comes from the sophisticated players�performance,

who are facing fewer strategic opponents. They do better in BM than DA to an extent that exceeds

the damage naïve students su¤er. In that sense, �gures 3 and 4 are in line with Pathak and Sönmez

(2008). With a substantial number of naïve students, sophisticated students are bene�ted by BM,

and naïve students would su¤er on average a payo¤ loss under BM, relative to DA.

6.3 Weak priorities

I introduce one level of school priorities in the simulation model, to see if the results are robust to

this. Priorities in one school are independent from priorities in the others. For a given school, a

student�s priority status is independent from other students�status. The priority status is drawn

from a Bernoulli distribution with a success probability that equals the inverse of the number of

schools. Since schools� priorities are mutually independent, it might be the case that the same

student has priority at several schools. The expected number of students with priority at some

given school equals its capacity. This is higher than what one could expect from sibling priority,

which was still a �ne priority structure for BM (see Remark 2).35

In a �rst set of scenarios considered, students�vNM valuations and priority status are uncorre-

lated. In an alternative set, student i�s vNM valuation for a school j where the student has priority is

increased to :2+ :8viaj , while her valuation at a school h that does not give priority to her is reduced

35A student�s probability of not having priority at any school is similar among the number of schools here considered

(.3349 with 6 schools, .3277 with 5, .3164 with 4).
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to :8viah. In this way, I incorporate the realistic assumption that school priority criteria (walking dis-

tance, siblings,...) are correlated with students�vNM valuations. Valuations are afterwards rescaled

to the simplex. Possible values of a are reduced to the set f:2; :6g.

Nash equilibria of BM are calculated in each scenario for 75 draws of all students�private val-

uations plus common vNM vector.36 Given students� revealed rankings, assignment probabilities

can be approximately calculated using the continuum approach of previous subsections. For each

of these draws and scenarios, the DA random assignment is also computed. Nevertheless, the con-

tinuum approach cannot be used in DA, since analytical di¢ culties arise when students apply �rst

for schools at where they do not have priority. Since no equilibrium calculation is needed in DA,

allocation probabilities are still computable in short time by drawing 500 lottery outcomes, cal-

culating the assignment for each lottery, and averaging over them. The next �gures show several

welfare comparisons, where welfare is computed as the average of mean (equilibrium) payo¤s across

75 valuation draws.
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36Convergence criteria are identical to the ones applied with no priorities. After 4000 iterations, the process had not

converged in a .67% of cases with no naïve students, and a .85% with naïve students. Respective average convergence

ratios, conditional on not convergence, are 92.68% and 97.98%.
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Figures 5 and 6 compare BM to DA in scenarios with no naïve students. BM is more utilitarian-

e¢ cient in all cases. Welfare gains are higher if valuations are not correlated to school priorities.

In this latter case, they are also more sensitive to an increase in the correlation among students�

valuations. Interestingly, they remain quite una¤ected by the introduction of weak priorities alone,

as a rapid observation of �gures 1 and 2 reveals.

That the correlation of valuations to priorities reduces the sensitivity of welfare gains to the

correlation of valuations among students is explained by the fact that priorities are independent

across students. This independence induces a reduction of correlation among all students�valuations.

It instead tends to segment students with respect to most-preferred schools, evenly across schools.

This lowers competition in any of the mechanisms, so welfare di¤erences diminish in a correlation-

to-priorities scenario because DA performs su¢ ciently well.37

Next, I introduce naïve students in this scenario with weak priorities. BM still outperforms DA

with respect to utilitarian welfare, with or without the corrective device that protects naïve students,

as can be seen in �gure 7. Interestingly, welfare gains are enhanced by the corrective device. No

trade-o¤ arises between fairness improvement and e¢ ciency gains, in constrast to what happens in

a no-priority scenario. In other words, sophisticated students�welfare gains su¤er little harm when

37An example with 5 schools and 20 students per school. With a = :2, DA-generated welfare without correlation

to priorities is .2945, which slightly grows to .2972 with correlation. With a = :6, the improvement is clearer: from

.2237 without correlation to .2494 with it.
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naïve students are protected.

This may be explained by the fact that naïve students are less protected by the corrective device

in the presence of weak priorities (�gure 8). The corrective device is able to reduce the naïve

students�welfare loss. However, some of this welfare loss still remains because the corrective device

does not prevent naïve students from applying to schools where students without priority status

have no chance.
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7 Conclusion

A large literature advocates replacing the Boston Mechanism in School Choice programs. The

Deferred Acceptance algorithm has been implemented in its place in Boston and Seattle. I introduce

several elements to this debate that might support the persistence of BM in other municipalities

such as Minneapolis or Cambridge, MA.

I analyze scenarios where schools have no priorities over students. Some strong theoretical results

against BM are based on the assumption that schools have strict priorities over all students. In real-

life school choice, students are classi�ed according to a maximum of four-to-�ve priority levels. Thus

my approach seems less far from reality than the assumption of strict priorities. In addition, it allows

for the analysis of realistic situations where students are potentially tied in terms of entry priority.

With a continuum of students, DA is ordinally e¢ cient. However, I show under the same con-

ditions that this property is not superior to ex post e¢ ciency. Moreover, DA performs very poorly

when all students share the same ordinal preferences over schools. Any other anonymous mechanism

weakly ex ante Pareto-dominates DA in that case.

Under full support of vNM utilities, DA is not ex ante e¢ cient if the number of schools exceeds

two (Abdulkadiro¼glu, Che and Yasuda, 2008). I propose a BM with Round-wise Tie-Breakers (RTB)

that is ex post e¢ cient and achieves several improvements over DA regarding ex ante e¢ ciency.

Simulations support the idea that BM is more (utilitarian) ex ante e¢ cient than DA. The supe-

riority of BM over DA in the utilitarian sense is maintained even when weak priorities, correlation

of valuations to priorities, and naïve students are included.

Naïve students are however better o¤under DA. If BM is to be kept or adopted, the concern about

naïve students has considerable relevance. For naïve students, a substantial loss comes from the fact

that they rank second-best choices in second position (and third-best schools in third position, and

so on) when these schools might not have available slots at the corresponding assignment round. A

partial solution might be to introduce a corrective device on reported rankings. Corrected reported

rankings would remove schools with no remaining slots to last positions. This correction would not

alter Nash equilibria outcomes when all students are sophisticated. Simulations suggest that this

device e¤ectively protects naïve students.

It is common practice in BM to assign a unique lottery number to each applicant. Should BM

be maintained or implemented, I recommend that each assignment round be accompanied by an

independent tie-breaking lottery. With no priorities, RTB makes each assignment round work as a

nondiscriminatory market, and this fact preserves ex post e¢ ciency, in a no-priorities context.
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Abdulkadiro¼glu, Che and Yasuda (2008) have proposed a new Choice-Augmented DA mechanism

as a compromise between BM and DA. Municipal authorities may need to proceed cautiously when

choosing among these mechanisms (DA, CADA and BM). If school priorities are strict in most cases,

then DA appears to be the best mechanism. At the other extreme, when schools have a low number

of priority levels, BM could be chosen or CADA could be a good alternative.38
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8 Appendix

8.1 Comments on CADA (Choice-Augmented DA)

Abdulkadiro¼glu, Che and Yasuda (2008) propose this new assignment mechanism in school choice

in an aim to �nd a compromise between DA and BM. In a setup with no priorities, CADA works

as follows. First, each student reports her ranking of schools plus a target school. Two independent

lotteries LT and LR are run. School priorities over students are constructed via lexicographic tie-

breakers: �rst, the fact that the student has targeted the school; second, among students who target

the same school (and if they simultaneously point to this one), the lottery LT ; �nally, for other ties,

LR. The process continues with a DA algorithm in which school priorities determine the order of

the students�tentative assignments.

CADA is strategy-proof with respect to reported rankings (any DA procedure is). The only

strategic element here consists of the school the v-type student targets. A targeting strategy for this

type is denoted as �(v). Unlike the original paper, I focus on pure strategies, since a Nash equilibrium

in pure strategies �� : V ! S exists in the induced targeting game (Abdulkadiro¼glu, Che and Yasuda,

2008). De�ne a school j as overdemanded in a CADA equilibrium �� if m(fv 2 V : ��(v) = jg) > �j .

A school j is underdemanded if it is not overdemanded. As mentioned in Section 5, CADA satis�es

all the properties enumerated in Proposition 3.

The following Lemma directly proves condition 4 in Proposition 3. Recall previously used no-

tation. QM (m;~�; s) denotes the set of equilibrium random assignments that mechanism M induces

given the measure m and the capacities ~� where there are exactly s underdemanded schools in

equilibrium.

Lemma 1 Fix m and ~�. Then QBM (m;~�; s) = QCADA(m;~�; s), for s = 1; 2.

Proof. See the second part of the appendix.

An important point here is that CADA and BM provide exactly the same outcomes when the

number of underdemanded schools is su¢ ciently low. Di¤erences arise between CADA and BM only

when the number of underdemanded schools is higher than two. With a total of three schools, it

follows that BM and CADA perform identically. Since condition 4 in Proposition 3 is shown for

CADA by Abdulkadiro¼glu, Che and Yasuda (2008), it obviously holds for BM.

When both BM and CADA are ex ante e¢ cient due to the fact that there is only one underde-

manded school, it turns out that each resulting random assignment is indeed one arising from the
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pseudomarket mechanism.

Since BM performs qualitatively similarly to CADA, the major justi�cation for this new mech-

anism must come from its simplicity. Clearly, it is easier to choose a single school to target than to

choose a complete ranking. This is a signi�cant advantage for CADA: ex ante e¢ ciency gains are

expected with respect to DA, and the game does not become especially complex.

On the other hand, the switch from DA to CADA is not costless. The following Remark clari�es

the signi�cance of the fact that CADA is strategy-proof with respect to the ranking of schools. To

understand it, observe that, in any CADA equilibrium, there is a (generically one) "worst" school

such that any student that applies there is accepted. This observation was necessary to make Remark

2 more precise.

Remark 3 1) In any CADA equilibrium, the student�s target determines the most-preferred object

for which the student has a positive assignment probability, except possibly for the "worst" school.

2) De�ne DA with First-Choice Priority (DA-FCP) as: students reveal ordinal preferences; two

independent tie-break lotteries L1 and L2 are run; a DA procedure follows with the following tie-

breakers: a) whether the school pointed to is �rst choice, b) between any two students pointing to the

same �rst choice, L1, and c) for the remaining ties, L2. It can be shown that for any m and ~�, both

DA-FCP and CADA induce the same random assignments. Also, DA-FCP is not strategy-proof.

That this remark is true can be seen along the lines of Abdulkadiro¼glu, Che and Yasuda (2008).

In equilibrium, the revealed ranking among overdemanded schools that are preferred to any under-

demanded school does not a¤ect the random assignment. If we constrain the strategy space to equal

the one of DA and BM, a mechanism equivalent to CADA is no longer strategy-proof.

To see again that ranking revelation plays a less important role, consider an extension of CADA,

named CADA-k, where students are allowed to name k ordered target schools. The subsequent DA

procedure establishes the following tie-breakers: 1) whether the student set the school as her �rst

target, 2) whether the student set the school as her second target, ... k) whether the student set

the school as her k-th target, and k+1) a fair independent lottery number for each target level, plus

another independent lottery to break ties among students who point to the same school while not

targeting it. The next Proposition states that CADA-k and BM are ex ante equivalent for k high

enough.

Proposition 4 Fix m and ~�. Then, with a continuum of students and no school priorities, both

CADA-k and BM induce the same random assignments if k � J � 2.
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Proof. See the second part of the appendix.

When CADA is su¢ ciently extended, the ranking revelation part of each student�s strategy has

no importance whatsoever in the resulting random assignment. This extended CADA becomes the

Boston Mechanism.39

The idea is that, if students� revealed ordinal preferences did not play any role in CADA-J

assignment, CADA-J would be equivalent to BM: choosing a school as one�s j-th target has the

same e¤ect in CADA-J assignment as ranking it j-th has in BM assignment. In CADA-J , a student

may have a chance of being accepted at her j-th target if: a) previously targeted schools reject the

student, and b) the school has previously accommodated all students who targeted the school higher

and there are still some slots left. It is not hard to see that BM works analogously. Therefore, the key

argument is that ranking revelation does not play any role in any CADA-J equilibrium assignment.

The CADA-(J � 1) case is just an obvious extension: the last target is a redundant element in each

student�s strategy. The CADA-(J � 2) case relies on the fact that students sincerely rank their two

last-ranked schools in any BM equilibrium.

This equivalence may not hold when schools have priorities over students. CADA, as proposed

by Abdulkadiro¼glu, Che and Yasuda (2008), puts school priorities ahead of target-driven priorities

in the tie-breaker hierarchy, whereas BM gives higher importance to ranking-driven priorities than

to school priorities.

CADA is a compromise between DA and BM, and it is a very appealing way to use preference

intensities when assigning probabilities. Nevertheless, the results stated above illustrate that a

trade-o¤ between strategy-proofness and ex ante e¢ ciency gains persists. CADA does not come for

free.

While I have shown that some extra ex ante e¢ ciency properties were already present in BM,

I do not claim that BM outperforms CADA in all cases. Indeed, Abdulkadiro¼glu, Che and Yasuda

(2008) illustrate via example that CADA can be ex ante e¢ cient in scenarios where BM is not, and

vice versa.40

For a special case, I do have one analytical comparative result between these two mechanisms.

If all students have the same ordinal preferences, and the second-best school is not relatively highly

valued for su¢ ciently many students, then CADA cannot be Pareto-preferred to BM.

39 In a recent version of their paper, Abdulkadiro¼glu, Che and Yasuda (2008) note this fact for the case where all

students have the same ordinal preferences and schools have no priorities.
40They compare CADA to CADA-2 in a four-school example. CADA-2 turns out to be ex ante equivalent to BM,

given Proposition 4 in the present paper.
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Proposition 5 Fix ~�, and let m be such that all students share identical ordinal preferences o =

(1; 2; :::; J) and m(fv 2 V : v2 � ~�0 � vg) � �2: Then there exists q 2 QBM (m;~�) such that no

~q 2 QCADA(m;~�) ex ante Pareto-dominates q.

Proof. See the second part of the appendix.

After having assigned slots at targeted schools, CADA splits the remaining school capacities

evenly randomly among non-placed students, when all of them share identical ordinal preferences.

That is an abysmal way to assign the remaining slots (in the sense of Proposition 2). All students

would do (weakly) better if a BM-like mechanism were applied to assign them. Since any student

who is not assigned to her �rst-ranked option in BM does (weakly) better than she would do in

CADA, she can try a rather less conservative �rst choice in the former mechanism. I prove that this

will indeed happen in some BM equilibrium if there is a CADA equilibrium where only school 1 is

overdemanded (for which m(fv 2 V : v2 � ~�0 � vg) � �2 is necessary and su¢ cient). Those who were

targeting a safe underdemanded school in any CADA equilibrium and now rank a more preferred

school �rst in the BM equilibrium improve their payo¤s.

The following corollary follows from Propositions 4 and 5.

Corollary 2 With four schools and identical ordinal preferences across students, there exists q 2

QBM (m;~�) such that no ~q 2 QCADA(m;~�) ex ante Pareto-dominates q.

I have performed some simulations with CADA, in order to compare BM to this mechanism.

CADA equilibrium computation is quite di¢ cult when weak priorities are included, so comparisons

are restricted to the no-priority case.

In general, the �gures below suggest that the di¤erences between BM and CADA are small (less

than 1%) if there are few schools. Figure 9 illustrates the di¤erences in utilitarian ex ante e¢ ciency

between the two mechanisms, in percentages. Two main patterns emerge. On the one side, BM

tends to be more e¢ cient when the correlation among students�vNM valuations is high, while CADA

is more e¢ cient in the opposite case. When correlation is high, students tend to have very similar

ordinal preferences. In CADA, students who do not get accepted at their targeted schools are near-

evenly assigned to the remaining slots. BM can improve over that, since students can strategize over

their second, third and so forth ranked schools, so that cardinal utilities in�uence the assignment of

remaining slots.
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Fig. 9: % Welfare gain BM-CADA, 20 students/school.

On the other side, di¤erences between BM and CADA seem to be ampli�ed when the num-

ber of schools increase. BM and CADA are ex ante equivalent when there are less than three

underdemanded schools. With four schools, di¤erences occur only when there are exactly three un-

derdemanded schools. The number of possible di¤ering cases increases when the number of schools

becomes larger.

One can observe that these di¤erences are small as compared to the di¤erences between BM and

DA, by noting the scale of the respective graphs. I conjecture that the former di¤erences would be

larger if the number of schools were higher. A 75-draw simulation with seven schools shows that

BM outperforms CADA by .66%, in 20 students/school scenarios when a = :7.41

41Since the number of available strategies per student is the factorial of the number of schools, an increase of one

school has a tremendous marginal computational cost.
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Fig. 11: Naïve students�% welfare di¤erences BM-CADA, 5 schools, 20 stud./sch.

Figure 10 may suggest an interesting alternative pattern with naïve students, although di¤erences

are still small with six schools or fewer. With no naïve students, BM is more e¢ cient than CADA

provided the correlation among students�valuations is high. With a substantial portion of naïve

students, the opposite happens. If a corrective device is applied to BM to protect naïve students,

an e¢ ciency loss arises. This loss decreases as the correlation among students�valuations becomes

larger.
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Figure 11 illustrates once again that the protective device is e¤ective in saving a substantial

portion of naïve students� losses in BM. When the correlation parameter is .7, naïve students�

welfare losses with respect to CADA are reduced from around 3.75% with no correction to scarcely

more that .5% if the correction is implemented.

8.2 Proofs

Proof. Proposition 1.

With a continuum of students, Abdulkadiro¼glu, Che and Yasuda (2008) have shown that any

assignment induced by DA can be characterized by a vector of cuto¤s (c1; :::; cJ), one for each school.

A student is assigned to a school she applies to (after having been rejected at other preferred schools)

if and only if her assigned lottery number is lower than the school�s cuto¤. The set of all possible

lottery numbers is the interval [0; 1], and these are uniformly assigned.

Consider a strategy pro�le r : V ! �(S). Write �r(c; j) for the measure of student types

who apply for school j (meaning that they were rejected at any other school that was put in a

higher ranking position) whose highest cuto¤ they have faced in previous rejections is c. I adopt the

notation �r(0; j) for the measure of student types who situate school j in �rst position. Without loss

of generality (WLOG), arrange schools in increasing cuto¤ order. The following recursive equations

apply:

c1 =
�1

�r(0; 1)

�j = �r(0; j)cj +
X
i<j

�r(ci; j)(cj � ci); j > 1

In the PS mechanism (the cake-eating algorithm), write tj for the "cake-end" time for school j.

It represents the moment in which slots at school j become unavailable (they have been completely

"eaten"). Set an eating speed of 1 for each student. Consider again the same strategy pro�le r.

Denote by ~�r(t; j) the measure of student types who at some point "eat" from school j given that

their latest (declaredly) preferred school to become unavailable does so at time t. WLOG, arrange

schools in increasing "cake-end" time order. Then "cake-end" times can be recursively calculated

from:

t1 =
�1

~�r(0; 1)

�j = ~�r(0; j)tj +
X
i<j

~�r(ti; j)(tj � ti); j > 1
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It is clear that the vector of cuto¤s equals the vector of "cake-end" times. Now, if a v-type student

sets a ranking (s1; :::; sJ) according to r, then qDAs1 (v) = cs1 and q
DA
sj (v) = maxf0; csj �maxi<j csig

for j > 1. But also qPSs1 (v) = ts1 and q
PS
sj (v) = maxf0; tsj �maxi<j tsig for j > 1. Therefore, the

mechanisms are ex ante equivalent.

Proof. Theorem 1.

De�ne the relation B between schools given (q;m;~�) as

i B j () 9Vij � V : m(Vij) > 0; 8v 2 Vij vi > vj ; qj(v) > 0

With a �nite number of students, Kojima and Manea (2007) show that the ordinal random

assignment q is ordinally e¢ cient at (m;~�) if and only if the associated relation B is acyclical.42

The easy extension of this result to a continuum of students is omitted.

The next step is to show that acyclicity implies, and is implied by, ex post e¢ ciency. That

acyclicity implies ex post e¢ ciency is clear. An ex post Pareto-improvement consists of a (�nite)

trading cycle. Namely, student 1 prefers the assignment of student 2, who prefers the assignment

of student 3,... who prefers the assignment of student k, who prefers the assignment of student 1.

Trading cycles occur for a zero measure m� l of students, due to the acyclicity of B.
So the proof ends by showing that ex post e¢ ciency implies acyclicity. Here the continuum of

students play its role. The lottery has been designed to give a constant conditional probability

measure m of student types for any measurable subset of lottery elements. Let B have a cycle

1 B 2 B ::: B s B 1: Let V12 = fv 2 V : v1 > v2; q2(v) > 0g. We can also de�ne V23; :::; Vs1
accordingly. Since all these sets have positive measure, a positive measure of lottery numbers give

student types in any Vij an assignment to j. By the way the lottery is constructed, there will be a

positive measure m � l of students receiving the proper lottery numbers. Thus, one can construct

an ex post improving trading cycle.

Proof. Proposition 2.

De�ne the Uniform Mechanism (UM) as the one that randomly assigns slots evenly among

students, regardless of their types. DA and UM are ex ante equivalent when all students have

identical ordinal preferences. Proposition 2 is a corollary from the following Theorem.

Theorem 2 With a continuum of students, UM is an abysmal mechanism in all environments.

42They also add a non-wastefulness condition, which is not needed here in absence of outside options.
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Proof. It is a generalization of Theorem 6 in Abdulkadiro¼glu, Che and Yasuda (2008). Let � be

the strategy space in some (anonymous) mechanism M , and let � be any element in �. Denote the

measure of students �nally playing strategy � as ��, and the assignment probability to school j for

a student who plays � as �j(�). For any school j, feasibility constraints imply
P

�2� ���j(�) = �j .

Let a generic mixed strategy be denoted as f��g�2�. A student who plays a mixed strategy �� = ��
for any � 2 � obtains an assignment probability �j for school j. But this is exactly the random

assignment one obtains in UM. So any student can do at least as well as in UM no matter what

other students�chosen strategies are.

Proof. Proposition 3 (conditions 1 to 3).

1) ex post e¢ ciency : In light of Theorem 1, one just needs to prove that B is acyclic. In BM, I
de�ne a school s as round-t overdemanded (s 2 Ot) if it was not round-(t � 1) overdemanded and

it has ful�lled all its slots at the end of round t (to complete the de�nition, O0 = ?). It is round-t

underdemanded (s 2 Ut) if s =2 O1 [ ::: [Ot.

First, I argue that if there is a cycle s1 B s2 B ::: B sk B s1, then there are no sa; sb 2 fs1; :::; skg
and round t such that sa 2 Ot and sb 2 Ut. For any sb 2 Ut, there are no v�type students who

strictly prefer sb to all sa 2 Ot and rank some sa ahead of sb. She would be suboptimally choosing

her strategy in that case, since sb is a sure placement in round t and earlier rounds. Thus, for any

pair sa 2 Ot and sb 2 Ut, sb 7 sa, and the cycle cannot be completed.

Thus, if there is any cycle s1 B s2 B ::: B sk B s1, all its components must belong to the same
set Ot, for some round t. I �nish the proof by showing that this case is not possible either. Due

to Round-wise Tie-Breakers, for each school sa 2 Ot all students ranking sa in t�th position have,

upon rejection in previous rounds, the same probability of being accepted at sa, namely �at.

Also, conditional of being rejected at round t, assignment probabilities in further rounds do not

depend on the choice sa, due again to RTB. Thus, if sa; sb 2 Ot and sa B sb, it must be the case
that �at < �bt. Suppose sa; sb 2 Ot and sa B sb. Both schools were underdemanded in previous

rounds, so it would be suboptimal for any student who ranked either sa or sb in position � < t to

pick the least preferred one among the two. Thus a positively measured set of student types picked

sb in t-th position when preferring sa. It must be the case that the gain in probabilities compensates

for the loss in vNM valuations (recall that the picked school does not a¤ect assignment probabilities

in further rounds upon rejection in round t), thus �at < �bt. Then, if a cycle s1 B s2 B ::: B sk B s1
exists, we must have �1t < �2t < ::: < �kt < �1t, which is a contradiction.

2) ex ante e¢ ciency within the set of overdemanded schools: Let r� : V ! �(S) be a Nash
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equilibrium in the BM game, given m and ~�. Let S�r� denote the set of overdemanded schools. For

any s 2 S�r� , any student type who did not put s �rst in her declared ranking has no chance to get

a slot there, since its slots are assigned in the very �rst round.

A v-type who put s 2 S�r� �rst in her ranking obtains the following expected payo¤:

�r�(v) = q
r�

s (v) � vs +
�
1� qr

�

s (v)
�
� vw

where vw is a convex combination of v-type�s vNM valuations for underdemanded schools given r�.

Such a v-type student prefers her �rst-choice school s to any underdemanded school (otherwise she

could get a sure slot at that underdemanded school by ranking it �rst). It is clear then that vs � vw.

RTB implies that vw is una¤ected by the speci�c overdemanded school that is ranked �rst.

Given that, this type is choosing r�1(v) 2 S�r� so as to solve maxs2S�r� q
r�

s (v)(vs � vw). For each

overdemanded school s, qr
�

s (v) = �s=m(f~v 2 V : r�1(~v) = sg). Notice that it does not depend on v.

Since all types who did not rank any s 2 S�r� �rst have zero assignment probabilities for each

of these schools, any reassignment that keeps probabilities unchanged in SnS�r� still obtains zero

probabilities in S�r� for these types. Hence I can safely ignore them.

Construct an arti�cial pseudomarket encompassing all overdemanded schools with their own

capacities and an unlimited outside option w which is valued vw for each v-type student. Only

students who ranked an overdemanded school �rst in the BM equilibrium are considered, and each

student is endowed with one unit of budget. In this pseudomarket, students buy units of allocation

probabilities, and there is an equilibrium price p�s � 1 associated to each overdemanded school.

WLOG (see Hylland and Zeckhauser, 1979), I can set p�w, the price of the unlimited good, to zero.

Except in case of indi¤erence (which happens for a measure 0 of student types), each v-type

student optimally chooses to spend all her endowment in buying probability units for the overde-

manded school d�(v) that solves maxs2S�
r�
(vs � vw)=p�s. Since each p�s is determined so as to clear

that school�s market, I obtain that for each s 2 S�r� , p�s = m(f~v 2 V : d�(~v) = sg)=�s. It is easy

to see that this arti�cial pseudomarket equilibrium replicates the BM equilibrium decisions r�1(�) for

those student types who put an overdemanded school �rst in their rankings. Since a pseudomarket

equilibrium is ex ante e¢ cient (Hylland and Zeckhauser, 1979), no feasible rearrangement of prob-

abilities in S�r� can possibly obtain ex ante Pareto-improvements. Hence the random assignment

from the BM equilibrium r� is ex ante e¢ cient within S�r� .

3) ex ante e¢ ciency if there is only one underdemanded school : it follows from the proof of the

previous condition. It is easy to see that the "outside option" w is the underdemanded school, so it
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does not need to be arti�cially constructed. Thus BM and the Pseudomarket yield identical random

assignments.

Proof. Lemma 1.

For s = 1, the proof is similar to the proof of Proposition 3 (condition 2), where w in now

understood as the unique underdemanded school. This argument shows that both BM and CADA

reach the same equilibrium outcomes as the Pseudomarket mechanism proposed by Hylland and

Zeckhauser (1979). So consider s = 2 in the rest of the proof.

My aim is to show that, following the lines of the previous proof, vw in equilibrium is the same

in BM as in CADA. Consider a BM-equilibrium r� with two underdemanded schools i and j. Given

r�1(v), a v-type student chooses r
�
2(v); :::; r

�
J(v) so as to maximize vw. With only two underdemanded

schools, one way to do so is letting r�2(v) = argmaxh2fi;jg vh (just because BM is strategy-proof

when J = 2). Other optimal choices are possible but they keep payo¤s unchanged for all student

types. In CADA with equilibrium �� where i and j are underdemanded, vw is determined by a

(strategy-proof) DA procedure between i and j. Since BM and DA are both equivalent procedures

when J = 2, vw will be the same in both cases.

Therefore, r�1 (�rst choices in BM-equilibrium) and �
� (the CADA equilibrium targets) are the

same, since they solve the same maximization program for each v-type: either maxs2Snfi;jg(vs �

vw)�s=m(f~v : r�1(~v) = sg) (use ��instead of r�1 in CADA), or choose i (or j) if i (or j)= argmaxs2S vs.

Proof. Proposition 4.

In the CADA-J game, a (pure) strategy pro�le is a function ~� = (�1; :::; �J) : V ! �(S) of �rst,

second,... and J-th targets. In CADA-J , de�ne a school j as target-t overdemanded (j 2 Ot) given

~� , m and ~� if it is not target-(t � 1) overdemanded and �lls all its slots with students who have

targeted j in t-th position or better (to complete the de�nition, O0 = ?). A school j is target-t

underdemanded (j 2 Ut) if j =2 O1 [ ::: [Ot.

Consider an equilibrium ~�� of the CADA-J game under m and ~�. Any such equilibrium satis�es

#(O1[:::[Ot) � t for any t 2 f1; :::; Jg. To see this, suppose Ot = ?, for some t 2 f1; :::; Jg. It must

be the case then that a positive measure of student types have targeted elements in O1[ :::[Ot�1 in

t�th position. These types must have targeted overdemanded schools for any � < t, since otherwise

they would have obtained sure assignment before t. Hence #(O1 [ ::: [Ot) � t.

For each t, among the schools in Ut�1, any student type whose more preferred school su belongs to
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Ut optimally signals � t = su. If s 2 Ut+1, the student might as well signal � t = sn=a 2 O1[ :::[Ot�1
with no loss of payo¤ (as long as su is properly targeted further), but this does not change the

random assignment, since the student has no chance at sn=a and will readily apply to su when it

is still target underdemanded. Besides, this student might list some target-t overdemanded schools

ahead of su in her ordinal preferences, but again this does not change the random assignment since

the student has no chance of acceptance at such schools. If a student targets a school so 2 Ot in

t-th position, it must be the case that she prefers it to any target-t underdemanded school, so she

will never apply to any of the latter before applying to so. This student might list some target-

t overdemanded schools ahead of so in her ordinal preferences, but the student has no chance of

acceptance there and will eventually apply to so.43

Given the previous paragraph and #(O1 [ ::: [OJ) = J , the DA procedure in CADA-J ignores

students�revealed ordinal preferences and just uses students�targets in equilibrium.

Since no assignment given ~��, m and ~� uses the information on students� ranking of objects,

each assignment is equivalent to one from BM given r = ~��, m and ~�. This is because ~�� generates

endogenous hierarchies of DA priorities that have the same e¤ects as de�nite acceptances do in BM.

The targets in CADA-J play the same role as the ranking does in BM. It follows that ~�� is also an

equilibrium in the BM game.

The equivalence result obviously holds between CADA-(J�1) and BM since both the last target

and the last-ranked school are redundant elements in each student�s strategy. That the equivalence

exists between CADA-(J�2) and BM can be understood from the fact that any equilibrium strategy

in the BM game honestly ranks the two last-ranked schools (just as BM is strategy-proof when

J = 2). In CADA-(J � 2), truthful rankings determine the assignment to untargeted schools with

some capacity left after targeters have been accommodated. In a BM-equilibrium r� there are at most

two schools with positive unassigned capacity at round J�1, because the property#(O1[:::[Ot) � t

holds also for BM. A CADA-(J � 2) equilibrium has a similar assignment property in equilibrium:

after all target priorities have been used in assigning school slots, only two schools (at most) have

positive remaining capacity. Since BM and DA work identically with only two schools, for each

BM-equilibrium there is a CADA-(J � 2) equilibrium that achieves the same random assignment,

and vice versa.

43This part of the proof is inspired by the proof of Lemma 3 in Abdulkadiro¼glu, Che and Yasuda (2008).
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Proof. Proposition 5.

First, I show that there exists a target equilibrium �� in CADA such that only school 1 is

overdemanded, if and only if m(fv 2 V : v2 � ~�0 � vg) � �2: Consider any target pro�le � such

that only school 1 is overdemanded, and no one targets any school s > 2. Let ��2 � �2 denote the

measure of student types targeting school 2. Targeting some school s > 2 is never a best response

to � , so a v-type student either secures v2 by targeting school 2, or she targets school 1 obtaining:

�1
1� ��2

v1 +

�
1� �1

1� ��2

�
(�2 � ��2)v2 +

P
j>2 �jvj

1� ��2 � �1

=
~�0 � v � ��2v2
1� ��2

This is higher than v2 if and only if v2 < ~�
0 �v. So the student�s best response is determined by this

inequality, which does not depend on ��2 . The (essentially) unique equilibrium where only school 1 is

overdemanded is characterized by all types such that v2 < ~�
0 �v targeting school 1, and those in which

v2 > ~�
0 � v targeting school 2. Such an equilibrium exists if and only if m(fv 2 V : v2 � ~�0 � vg) � �2,

which keeps school 2 underdemanded. Let ��
�

2 � m(fv 2 V : v2 � ~�0 � vg):

In a generic BM strategy pro�le r, let �� denote the measure of student types who choose

� 2 �(S), and �j the measure of them whose �rst-choice school is j. Let ~� � (��)�2�(S). Finally,

de�ne the set � = f~� 2 �#�(S)�1 : �2 � ��
�

2 ; �s = 0 8s > 2g. Note that � is compact.

De�ne the function � : �#�(S)�1 ! �#�(S)�1 as the result of a best-response pro�le at BM.

That is, if ~� is given by r, �(~�) is given by the pro�le of best responses to r. It is a function

since best responses are singletons almost everywhere. It is also continuous under the atomlessness

assumption. I show that �(�) � �.

Consider any strategy pro�le r in BM such that its implied ~� belongs to � (and thus �2 � ��
�

2 ).

If CADA is played and such a measure �2 of students target school 2 (and the rest point to school

1), a v-type student who targets school 1 and is rejected there receives

vCADA(�2) �
(�2 � �2)v2 +

P
j>2 �jvj

1� �2 � �1

This is higher than vCADA(��
�

2 ) (strictly so if �
��

2 > �2). Now, if that student best-responds to

r by a ranking that puts school 1 �rst and she is rejected there, she obtains vBM (�2). Following

Proposition 2, vBM (�2) � vCADA(�2), since she cannot do worse than in an evenly random split of

remaining slots.

This implies that the measure of student types ranking school 2 as part of a best response in BM is

(weakly) lower than the measure of student types best responding at CADA by targeting that school
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(��
�

2 ). To see this, note that the payo¤ from ranking school 1 �rst in BM is (weakly) higher than

the payo¤ from targeting the same school in CADA, regardless the student type. Hence �(�) � �.

Since �(�) is continuous and � is compact, Brower�s �xed-point theorem applies. Therefore, there

exists a BM equilibrium r� such that its associated ~�� belongs to �. Let ��2 denote the measure of

student types ranking school 2 �rst in this equilibrium.

If ��
�

2 > ��2, then there is a strictly positive measure of student types that were targeting school

2 at the CADA equilibrium �� and now rank school 1 �rst at r�. These students are better-o¤ in

BM than in CADA. If ��
�

2 = ��2, no student is worse-o¤ in BM than in CADA, since vBM (��
�

2 ) �

vCADA(�
��

2 ) for every student type. If we consider another target equilibrium � 0, we always �nd a

positive measure of student types who improve their payo¤s if the mechanism is switched to BM

and the equilibrium r� is played (for instance, students targeting some school s > 2 at � 0).
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