Supply. Part 1

1. Study properties of the production set.

(a) Show that the possibility of inaction together with convexity imply nonincreasing returns to scale.

(b) Show that if Y is convex and has constant returns to scale, then it is additive.

(c) Show that if Y is additive and has constant returns to scale, then it is a convex cone.

2. Try to prove that if the production set Y is closed, convex, and satisfies free disposal, then it can be recovered from the profit function alone. Do it in the following way: define

$$\hat{Y} = \{ y \in \mathbb{R}^n : py \le \pi(p) \text{ for all } p \in \mathbb{R}^n_+ \}$$

(a) Show that $Y \subset \hat{Y}$ (Trivial).

(b) Show that $\hat{Y} \subset Y$ (Easy).

[Hint: Use a separating hyperplane argument to show that any $x \notin Y$ must lie outside of \hat{Y} . Free disposal helps you deal with the non-negativity of p.]

3. Consider the following three "two inputs-one output" technologies $f(z) = z_1 + z_2$, $g(z) = min\{z_1, z_2\}$ and $h(z) = [z_1^{\rho} + z_2^{\rho}]^{1/\rho}$ with $\rho < 1$.

(a) Check whether the above technologies are additive.

(b) Find the cost functions c(w, q) and factor demands z(w, q).

4. Solve problem 5.D.3 in MWG.

Recommended Exercise. (No need to hand in)

5. Proposition 5.C.2. in MWG links properties of cost functions c(w, q) and production functions f(z), where z denotes inputs. Prove properties (i)-(vii).