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Abstract

We study random assignment economies with expected-utility agents,
each of them eventually obtaining a single object. We focus attention
on assignment problems that must respect object-invariant (or uniform)
weak priorities such as seniority rights in student residence assignment.
We propose the Sequential Pseudomarket mechanism: The set of agents
is partitioned into ordered priority groups that are called in turns to par-
ticipate in a pseudomarket for the remaining objects. SP is characterized
by the concept of Consistent Weak Ez-ante Efficiency (CWEE), that is,
Weak Ex—ante Efficiency complemented by Consistency to economy re-
duction. Moreover, it is shown that CWEE generically implies Fx-ante
Efficiency.
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JEL codes: D47, D50, D60

1 Introduction

Preexisting priority rights are present in many assignment problems. For example,
in school choice, a child whose parents apply for the last slot at a public school
cannot typically occupy it if the parents of another child with a sibling already
attending the school want that slot (the so-called sibling priority). There are many
priority criteria in many different assignment problems: proximity to the school,
low income, or being organ donor in "kidney exchange".

This paper focuses attention on (possibly weak) priority structures that are
object-invariant (uniform), that is, independent from the object for which agents
are competing. A paradigmatic example of this kind of problems is the assignment
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of students to college residences with seniority rights. The practical motivation
question of this paper is whether there is a mechanism that respects object-invariant
priorities while it attains good ex-ante efficiency properties. Is the respect for
uniform priorities compatible Wlth ex-ante Pareto efﬁ(nency‘?

As we will see, the answer is "generically yes". A simple mechanism is pro-
posed that achleves both objectives. We introduce the Sequential Pseudomar-
ket (SP), an extension of Hylland and Zeckhauser’s (1979) pseudomarket.! In
SP, ordered groups of agents (top-priority agents, second-priority agents...) are
called in turns that participate in the pseudomarket for the remaining objects. A
SP-equilibrium is a sequence of pseudomarket equilibria turn by turn. It is easy
to see that SP encompasses a family of mechanisms Whose opposite extremes are
serial dictatorship and pseudomarkets without priorities.? Considering ordered
groups as priority groups, it is also straightforward to see (Lemma 1) that any SP-
equilibrium assignment respects uniform priorities in the ex-ante stability sense
(Kesten and Unver, 2015). This makes SP suitable for random assignment prob-
lems with uniform weak priorities.?

In principle, the SP mechanism cannot guarantee that its equilibrium outcome
is ex-ante efficient.* For that reason we propose a new, weaker notion of efficiency,
namely Consistent Weak Ex-ante Efficiency (CWEE) This notion of effi-
ciency is the result of applying the Consistency requirement (see Thomson, 2015,
for a recent survey on this concept and its relevance) to the notion of Weak Ex-
ante Pareto-efficiency of a random assignment.® Consistency in this context means
that, after removing any set of individuals and their assigned probabilities from
the economy, the weak ex—ante efficiency property of the random assignment holds
in the remaining economy.® In a characterization result, we show that a random

'Hylland and Zeckhauser show that the pseudomarket satisfies the First Welfare
Theorem for random assignments. Miralles and Pycia (2014) show the Second
Welfare Theorem counterpart.

2Informally, one extreme is the set of allocations rendered by the finest ordered
partitions (strict uniform priorities), while the other extreme compresses random
assignments resulting from the singleton partition (no priorities.)

3In a very recent paper, Han (2015) also studies random assignments with pri-
ority groups ordered hierarchically. He focuses on ordinal preferences, hence he
designs generalizations of Serial Dictatorship and Probabilistic Serial to these pri-
ority structures. While the former mechanism is designed to guarantee ex-post
efficiency (no mutually beneficial exchange of final allocations) and the latter aims
at the finer notion of ordinal efficiency (no first-order stochastically dominating
feasible redistribution of probabilities), the SP mechanism suggested in this pa-
per generically satisfies the even finer notion of ex-ante efficiency (no mutually
beneficial trade of assigned probabilities).

+A random assignment is ex-ante efficient if there is no feasible redistribution
of probabilities in which everyone is ex-ante weakly better-off, with at least one
agent being strictly ex-ante better-off. Example 1 in the main text illustrates that
SP does not guarantee this property.

5 A random assignment is weakly ex-ante efficient if there is no other feasible
random assignment in which all agents in the economy are strictly ex-ante better-
off.

sChambers (2004) suggests a more restrictive notion of probabilistic consistency




assignment is CWEE if and only if it can be generated by an SP-equilibrium for
some partition of the set of agents into ordered groups (Theorem 1). This re-
sult contains both First and a Second Welfare Theorems for random assignment
economies, when the efficiency notion is CWEE."

It is easy to see that Ex-ante Efficiency implies CWEE, which in turns im-
plies Weak Ex-ante Efficiency. Converses are not true in the random assignment
economies we study (see Example 1 in the main text.) But then, how far is CWEE
from ex-ante efficiency?

Theorem 2 brings good news: we can generically state that every CWEE (and
hence any SP-equilibrium) random assignment is ex-ante Pareto-optimal® This
result is somewhat striking since differently priority-ranked agents face different
relative prices, a fact that could have caused inefficiency on the random assignment.
A second look at the problem clarifies it. Theorem 1 allows us to think of CWEE
random assignments as SP-equilibrium random assignments. In a SP-equilibrium
random assignment, no agent could be strictly better-off after trading assignment
probabilities with lower-ranked agents. Whatever the latter agents obtained, it was
zero-priced for the former agent, and she discarded it. However, it is still possible
that some trades leave the former agent indifferent while benefitting lower-ranked
agents.

Two generically met assumptions disregard the latter concern. First, that no
agent is indifferent between two object types (Assumption 1.)? Second, a regulamty
condition for preferences (Assumption 2,) which embeds the assumption of Bon-
nisseau, Florig and Jofré (2001) used for linear utility economies (see their Lemma
4.1,) namely that there is no cycle of marginal rates of substitution of different
agents that multiplied altogether yield one. Our assumption is quite technical yet
it can be explained from the next question: From each possible initial assignment,
is there any feasible redistribution of probabilities between two or more agents

by which each agent leaving the economy realizes a draw from her assignment
probabilities and leaves with a sure object. Instead, our approach uses the argu-
ment in Thomson (2015, page 215): "An alternative approach is to think that, to
begin with, each object is available with a certain probability that is not necessar-
ily equal to 1. [...] When an agent leaves with his assignment, namely a vector of
probabilities of receiving the various objects, the probability of each object being
available to the remaining agents is decreased by the probability with which it has
been assigned to the agent who leaves."

"CWEE is also related to Roth and Postlewaite’s (1977) notion of strong-
domination stability. A final allocation is strong-domination stable if it is in the

weak core of a market where the final allocation is taken as the endowment. Our
notion constitutes the extension of their notion to random assignments. However,

we prefer to understand CWEE as an efficiency concept rather than a stablhty
concept, since core concepts are more easily understood as related to initial en-
dowments.

sTo be precise, the set of preference profiles under which there is equivalence
between CWEE and ex-ante efficiency is dense in the space of preference profiles.

9This assumption can be rapidly side-stepped by adding some additional struc-
ture on pseudomarket allocations. For instance, Hylland and Zeckhauser (1979)
impose that each agent, when being indifferent among any two bundles, chooses the
least expensive one. In this way, ex-ante Pareto-optimality of any Pseudomarket
allocation is guaranteed.



in which all of the affected agents remain indifferent? If the answer is no for all
possible initial random assignments (which happens generically'?), the regularity
condition is satisfied. Our assumptions 1 and 2 imply an important side result
(Proposition 1): each pseudomarket price equilibrium has a unique associated
equilibrium assignment. And ex-ante suboptimality of a CWEE allocation (the
concern in the previous paragraph) can only arise when this is not the case, as
shown along the proof of Theorem 2.

We remark at this point that Weak Ex-ante Efficiency alone does not generically
imply Ex-ante Efficiency. The generic property of CWEE in Theorem 2 is not
the fruit of a "sandwiching effect" between Weak Ex-ante Efficiency and Ex-ante
Efficiency.

More than thirty years after the seminal paper by Hylland and Zeckhauser,
pseudomarkets are attracting increasing interest both in finite and continuum
economies.'’ Examples of recent papers are Azevedo and Budish (2015) on strategy-
proofness in the large that applies to pseudomarkets, or Budish, Che, Kojima and
Milgrom (2012) on pseudomarket mechanisms for multidimensional assignment.
We contribute to this literature by providing a proper and simple combination
between pseudomarket and serial dictatorship that performs satisfactorily in as-
signment problems with object-invariant priority structures.

This paper is closely related with two other recent pieces of research: Miralles
and Pycia (2014) and He, Miralles, Pycia and Yan (2015). The first paper es-
tablishes a Second Welfare Theorem for random assignment economies. In virtue
of this result, one could have obtained any ex-ante Pareto-efficient assignment,
including one that respects uniform priorities, by fine-tuning individual incomes
and then letting agents purchase probability bundles in a competitive market. The
practical advantage of the approach taken in the current paper is that, instead of
adapting incomes to agents’ preferences so that uniform priorities are respected,
we just need to assign turns. Success in reaching an Ex-ante Efficient random
assignment is generically guaranteed. The SP method becomes informationally
less demanding, and hence easier to implement.

The second paper analyses the question of how we can adapt the Pseudomarket
mechanism to meet any set of (possibly weak) priority criteria. This includes
uniform priorities as a special case. The suggested solution is an alteration of
prices depending on priority status. For each object type there would be a critical
priority level which pays the market price. Instead, higher priority levels enjoy
zero price for the object, whereas lower priority levels face infinite price. The
Sequential Pseudomarket is an example of such a mechanism for the case of uniform
priorities. Sequential Pseudomarkets deserve however particular attention, since
they generically guarantee agent-side ex-ante efficiency, a nice property when the
other side of the market is constituted by objects. For more general priorities, only
two-sided unconstrained efficiency is guaranteed, considering priorities as objects’
(weak) ordinal preferences.

Section 2 presents the basic notation and definitions of the model. Section 3
introduces SP and its stability properties. Section 4 contains the Welfare Theorems

wRemark 2 in the main text serves to notice that the answer to the previous
question is yes only when some matrix of indifference-holding vectors of probability
redistributions is singular.

11See Thomson and Zhou (1993) and Ashlagi and Shi (2015) for a result on

efficient and fair allocations in continuum economies.



linking SP with CWEE. Section 5 establishes generic equivalence between CWEE
and Ex-ante Efficiency. Section 6 concludes. An appendix contains the proof of
Proposition 1 and additional analysis regarding Assumption 2.

2 The model: notation and definitions

Random assignment and preferences

There is a finite set of agents N = {1,....n}. The notation x or y is used for a
generic element of N. There is a set of object types S = {1,...,s}, with s > 3. The
notation i or j serves to indicate a generic element of S. For each object type j
there is a number of identical copies 7 € N. n = (1',...,n°) is the supply in this
economy. We have enough supply in the sense that >, o7’ > n.

A random assignment is a n x s matrix @ whose generic element ¢/ > 0 is the
probability that agent z obtains a copy of object type j. This matrix is stochas-
tic: Y .cgql =1 for any 2 € N. Agent z’s random assignment is the probability

distribution ¢, = (¢, ...,¢%) € A® (A® is the s — 1 dimensional simplex). A random
assignment is a pure assignment if each of its elements is either 1 or 0. A random
assignment is feasible if Q7 -1, <n (where 1, is a vector of n ones and 7 denotes
the transpose of a matrix). A feasible random assignment can be expressed as a
lottery over feasible pure assignments.

Let vV € R*® denote a n x s matrix of nonnegative von Neumann-Morgenstern
valuations, whose generic element v/ indicates agent z’s valuation for object type
j. A generic agent z’s valuation vector is v, = (v},...,v$). She values her random
assignment ¢, as the vectorial product wu,(¢.) = v, - ¢.. Fach agent z has a set of

most-preferred object types M, = argmaxv). An agent z is satiated if ¢, contains
jeSs

positive probabilities for objects in M, only. An economy is a triple E = (N,n,V).

Efficiency notions

Let Fr denote the set of feasible random assignments in an economy E. A
feasible random assignment Q* is ex-ante Pareto-optimal (or ex-ante efficient) at
an economy FE if for any random assignment Q, ¢, - v, > ¢* - v, Vo € N (with strict
inequality for some z)= Q ¢ Fg.

For a feasible random assignment Q*, let a trading coalition C ¢ N from Q*
be defined as follows: 3Q such that a) ¢%-v, < ¢, -v, for all z € C, b) ¢ = ¢, for
all z € N\C, and ¢) > ,ccqr < n—Y,cnc s A feasible random assignment @~

is Consistent Weak Ex-ante Efficient (CWEE) for an economy E if it admits no
nonempty trading coalition C. A feasible random assignment Q* is weakly ex-ante
efficient for an economy E if N is not a trading coalition from Q*.

Prices and equilibrium

A price vector is notated as P € R%.. A price vector P* constitutes a pseudomar-
ket quasiequilibrium for an economy E with associated feasible random assignment
Q* if for any random assignment @ and any agent z we have u,(q.) > u.(q}) =
P*.q, > P*-q:. A price vector P* constitutes a pseudomarket equiltbrium for an
economy FE with associated feasible random assignment @Q* if for any random as-
signment @ and any agent = we have u,(¢.) > u.(¢}) = P* - ¢, > P* - ¢;. We restrict
attention to equilibria satisfying the slackness condition: 3 .\ ;' < n* implies

12Notice that the weak inequality allows for an easy inclusion of an outside option
for every agent.



P = 0. Existence of equilibria satisfying this condition is proven, for instance, in
He, Miralles, Pycia and Yan (2015).

We have not explicitly modeled individual budget limits in the preceding defi-
nitions. They are implicitly defined though, being equal to P* - ¢ if agent z is not
satiated, or not lower than P* . ¢ if agent z is satiated. Our notation implicitly
accommodates from simple budget distributions (e.g. the usual equal income for
all agents) to richer, history-dependent budgets.

Priorities and stability

A priority for object type j € S is a weak linear ordering =7 over the elements
in N. =/denotes the strict part of =/ while ~/ denotes the indifference part of 7.
A priority structure is a profile (=7),cs.

A priority is a rule to resolve conflicting demands: if two agents claim for the
unique remaining copy of an object type, the agent with higher priority must
obtain it. This definition admits weak priorities: both z and y could be considered
at the same priority level for some object type j.

A feasible random assignment @ is ex-ante stable (or it respects priorities ex

ante) & la Kesten and Unver (2015) if for any object j € S and any two agents
z,y € N we have that = ~7 y and ¢/ > 0 imply ¢, = 0 for all objects i € S such that
vl < wi.

Uniform priorities arise when each agent x has priority over agent y for object i
if and only if » has priority over agent y for every other object. Formally, a priority
structure (=7);es is object-invariant (or uniform) if for every i,j € S we have =i=
~J. An object-invariant priority structure gives rise to an ordered partition of N
into a collection of disjoint sets Ny, ..., N,, such that for every ¢t < 7, x € N; and
y € N, we have that z =7 y for all j € S. We also say in this case that the ordered
partition Ny, ..., N induces uniform priorities (=7);cs if for every t < 7, z € N, and
y € N,, we have that = =7 y for all j € S. For the rest of the paper we focus on
models with object-invariant priorities.

Provided an ordered partition Ny, ..., N,, we say that a random assignment Q
respects uniform priorities induced by Ny, ..., N, in the Kesten-Unver ex-ante sta-
bility sense (Kesten and Unver, 2015) if this condition holds: if for ¢ € {2,...,7} and
for some i € S we have ZIEN ¢t >0, then for all z € NyU..UN,_; it must be the
case that for every j € S, vl > vl = ¢i* =0.13

3 Sequential pseudomarkets and ordered priority sets

We first introduce the key idea of this paper, the presentation of an intuitive
mechanism that works well under object-invariant priorities.

Definition 1 (SP Mechanism and Equilibrium) The SP mechanism with ordered
partition Ny, ..., N, at economy E proceeds as follows. First, the set N is partitioned
into disjoint ordered sets Ny, ..., N, with = <n. We start with a reduced economy E;
with Ny on the demand side and n, = n as the supply side. Calculate a pseudomarket
equilibrium price vector Py jointly with an associated random allocation Q% for this
reduced economy. Fort=2,..s, calculate the remaining supply n, =n,_1—Q; 11N, .|
and use Ny on the demand side to calculate a new pseudomarket equzl@bmum price

13]t is easy to see that this is a straightforward extension of the previous definition
of ex-ante stability to uniform priorities.



vector Py with an associated random allocation Qi for the reduced economy E; =
(Nj, n, V)"t (Vi is a selection from V that contains the preferences for agents in
Ny

The array of price vectors [Py,..., PX] constitutes a Sequential Pseudomarket
(SP)- equilibrium price matriz at economy E given the ordered partition Ny, ..., Ny.
The vertical composite matriz Q* = [Q3, ..., Q%] is a SP-equilibrium random assign-
ment associated to [P;, ..., PX] at economy E given the ordered partition Ni,...,N,."

Remark 1 When m = n SP becomes a Serial Dictatorship. Each SP-equilibrium ran-
dom assignment is simply a Pseudomarket equilibrium outcome a la Hylland and
Zeckhauser (1979) if # =1. SP is indeed a combination of these two mechanisms.

Subsequent sections explore the efficiency properties of SP. Incentive compati-
bility in large economies is shown for a family of mechanisms of which SP forms
part in He, Miralles, Pycia and Yan (2015). What remains of this section clarifies
its stability properties. We show that every SP equilibrium random assignment
from an ordered partition Ny, ..., N, respects uniform priorities induced by such a
partition.

Lemma 1 Let Q* be a SP-equilibrium random assignment at economy E provided an
ordered partition Ni, ..., N.. Then Q* respects uniform priorities induced by Ny, ..., Ny

in the Kesten-Unver ex-ante stability sense.

Proof. Since Yy, ¢&* >0, it implies that Y3 __ > .y ¢ <7’, for all r < ¢, and this
implies P = 0 for all » < . For all agents z € N;U...UN,_;, no object type is cheaper
than i, therefore purchasing probabilities of a less-preferred object type would be
suboptimal. =

Corollary 1 In every SP-equilibrium random assignment Q* under the ordered par-
tition Ni,...,Nr, for each t = 1,...m and for each agent x € N, ¢ first-order sto-
chastically dominates (according to x’s preferences) every assignment q;, if y €
Nip1U...U Ny

4 Welfare theorems regarding consistent weak ex-ante efficiency

The following result states that CWFEFE characterizes the set of all SP-equilibria
outcomes generated by every possible ordered partition.

Theorem 1 1) (Second Welfare Theorem for CWEE) For a finite economy E, if Q*
1s CWEE, then there is an ordered partition Ny,..., N, of the set N such that Q* is
a SP-equilibrium random assignment given the ordered partition Ny, ..., Ny.

2) (First Welfare Theorem for CWEE) For each ordered partition Ny, ..., N, of
N, every associated SP-equilibrium outcome Q* is CWEE at E.

14“We assume that every Pseudomarket equilibrium satisfies the slackness condi-
tion: every object type in excess supply is sold at zero price.

1Without loss of generality, agents could be labeled in a way that the matrices
Q* and V are consistent (i.e. each row refers to the same agent in both matrices).



Proof. Part 1) It follows a recursive argument. We explain the first iteration,
which is afterwards repeated with the "continuation economy" (we define it below)
until all agents are removed. We start this iteration by considering a reduced
economy E” = (N",n", V") that is resulting from removing all agents = who obtain
a most-preferred object type: N ={z e N:3, ), ¢* =1}. We also remove their
assignments from the supply vector, obtaining . The remaining assignment is
denoted as Q" = (¢*).en-. This is without loss of generality since any price vector
would meet the competitive equilibrium condition for these agents. We also skip
the simple case in which everyone obtains a most-preferred assignment.

For any agent z € N” there exists a non-empty convex set of strictly preferred
probability distributions U, = {q € A® : u.(q) > u.(¢:)}. Likewise, the set U =
> sen+ Uz is well-defined and convex. Naturally, U ¢ [N7|-A® (since 3,y ¢ = [NT]).

Let us define Y = HES[Omg], the set of aggregate feasible random assignments,
J

which is also convex. Since Q* is CWEFE (and so is Q" at E") we have UnY = @
(otherwise N™ would be a trading coalition). Applying the separating hyperplane
theorem to the rescaled simplex |N"|-A*, there exists a price vector P € R% /{(p, ...,p)
p >0} and a number w € R such that P-a >w > P-b, for any a € U,b € Y. We get rid
of price vectors with all equal elements since those would not divide the rescaled
simplex in two parts. The object types with excess supply (3, n- @27 < n"7) would
have a zero price component in any such vector P (P7 = 0).

Let M be a n x s random assignment matrix (with generic element m?) such
that 3=, mJ =1 for every € N. Take a random assignment @ such that ¢, -v, >
¢ v, Vx € N. Consider a number « € (0,1) and build the random assignment
Q* = aQ+(1—a)M. Since ¢¢ € U, for every z € N”, we have P-Y°__\. ¢¢ > w. Taking
the limit, since gkLHﬁQa =Q, we have P-Y _\. ¢ > w.

The same applies to the case Q = Q* : P- Y - ¢; > w. But we know that
> oene @i €Y because Q* is feasible, implying P- )" v, ¢; < w. We conclude P -
> een+ @i = w. For, this reason, if we take ¢, € U, for any agent z € N", we
have P - (qx + e\ (a) q;> >w=P- (q; + N\ (o} q;>. Consequently we have
P-q, > P-q, proving that P constitutes a pseudomarket quasiequilibrium for this
economy E with associated random assignment Q*.

For each agent » € N™ such that there exists a probability distribution g, meeting
P.g. < P-q, P is indeed a pseudomarket equilibrium price vector. This follows a
standard argument. Suppose ¢, € U, and P-q, = P-q}. Take a number « € (0,1) and
build the random assignment ¢ = ag, + (1 — a)g., which meets P-¢2 < P-¢:. But
for a close to 0, ¢ € U,, and this would contradict the fact that P constitutes a
quasi-equilibrium. Therefore we must have P-q, > P-¢?, proving that P constitutes
an equilibrium price vector for these agents.

We then focus on the agents for which there is no such probability distribution
g If there is no ¢, € U, such that P-q, = P-¢, then P is indeed a quasi-equilibrium
vector for this agent x. So define N°={z e N:3¢q, €U,, P-qu =P -q = r%ing}. If

J

N¢ = @ we are done since the quasiequilibrium price vector actually constitutes an
equilibrium. Thus we assume N¢ # &.

We claim that our partition starts by setting N, = N\N¢ (the set for which P
is actually an equilibrium price vector with associated random assignment Q7 =
[¢%]zen, ) and Ny U...UN, = N¢. For this we just need to show that N is not empty.



If N is not empty, we are done. If it is, we know that there exists an "expensive"
object type i such that P? > r_réing (since P ¢ {(p,...,p) : p > 0}). If no agent z
J

gets ¢:* > 0, then the object type has excess supply implying P! = 0, contradicting
Pt > rjneing. Therefore, some agent = € N gets ¢’ > 0, and consequently z ¢ N°.
Then N\N¢ # @ as we wanted to show.

For the next iteration, the "continuation economy" would consist of s¢ = {j €
S =Y en, @ >0}, n° = (7 =Y, cn, @7)jese and N¢. We proceed as in the first
iteration to find, subsequently, nonempty disjoint sets N, ..., N. For some iteration
7 <n we have N; U...UN, = N since N is finite, and we are done.

Part 2) It follows a recursive argument. Let a trading coalition C ¢ N be defined
as follows: 3Q such that a) ¢* -v, < ¢, -v, for all z € O, b) ¢% = ¢, for all z € N\C,
and ¢) Y ,c0 @ <1 — Y eno ¢s- We show that it must be the case that ¢ = o.

We claim that Ny nC = @. If not, there must be a nonempty subset N ¢ N; and
an alternative feasible random assignment @ such that ¢*-v, < ¢, -v, for all z ¢ N
and ¢¢ = ¢, for all z € N;\N. The SP-equilibrium (with price vector Py associated
to Ny) implies Py -3 oy, @i < PP+ ,cn, @2y and therefore Yo oy 7 < 3, oy, ¢4 for
some object type j such that P;? > 0. Since this price is strictly positive, there is
no excess supply in the reduced economy with ~N; on the demand side and » as the
supply side. We must have Y- .y ¢/ =7’ and thus }° 5 ¢} >»’/. This constitutes
a contradiction as @ is not feasible.

Consequently, Ny nC = @. We focus on the "continuation economy" consisting
of Se={jeS:n -3 ,cn @ >0% 0= =Y, cn, @)jese and N\N;. Using the
same argument in each "continuation economy", we recursively see that NoNC = &,
N3N C = @... Since N = U_; N;, we conclude that C = 2. =

5 Consistent weak ex-ante efficiency and ex-ante Pareto-optimality

We ideally want to fully characterize the set of ex-ante Pareto-optimal random
assignments. Since an ex-ante Pareto-optimal random assignment is CWEE, it
can be generated by a SP-equilibrium for some ordered partition of the set of
agents. Unfortunately, the set of SP-equilibria outcomes may not coincide with
the set of ex-ante Pareto-optimal assignments. A simple example with two agents
z and y and two objects i and j illustrates this fact. z is indifferent between the
objects whereas y strictly prefers object i. If Ny = {z} and N, = {y} there exists a
SP-equilibrium such that = picks i and y picks the remaining object j, which is not
Pareto-optimal.

Clearly, ex-ante Pareto-optimality is a finer concept of efficiency than CWEE.
Therefore, we want to explore if the Sequential Pseudomarket can also guarantee
an ex-ante Pareto-optimal random assignment.

We assume hereafter that for no agent there could be two equally valued object
types.

Assumption 1: No agent is indifferent between any two object types: vl # vi,
Ve e N,Vi,je S:i#j.

This example, from Jianye Yan, illustrates that ex-ante Pareto-optimality is
not guaranteed by Assumption 1 alone.

Example 1 (By Jianye Yan). This economy has four object types 1, ...,4 with capac-
ities n = (2,2,2,1). There are 3 z—type agents with valuations v, = (0,1,2,3) and 3



y—type agents with valuations v, = (1,0,2,3). All these six agents enjoy high priority
(h) at all object types. There is a seventh agent, z, with valuations v, = (2,3,1,0)
and lowest priority (1) at all object types. One SP-equilibrium assignment has
prices Py = (0,0,3/2,3). The associated random assignment for high-priority agents
is q; = (0,2/3,0,1/3) and ¢ = (1/3,0,2/3,0), yielding utility 5/3 to all siz agents. For
agent z, there is only one remaining unit of object type 1, ¢¢ = (1,0,0,0), yielding
utility 2.

Consider this alternative feasible allocation: ¢, = (0,1/3,2/3,0), ¢, = (2/3,0,0,1/3),
¢. = (0,1,0,0). All high-priority agents still keep utility 5/3. Yet agent z is better-off,
since she obtains a unit of object type 2, and payoff increases to 3.

We immediately observe that agents with high-priority status are indifferent
between the two allocations. Moreover, the allocation given by (¢.,q,) is also a
pseudomarket equilibrium at prices P;. A deeper insight reveals a third observation:
if all zero-priced object types are unified into a unique artificial one with valuation

1 = max{v},v2} = max{v},v2} for all high-priority agents, then agents of types = and
y have linearly dependent preferences in the following sense: Z%:Z% = Z%:Z% And

this allowed for probability trading between z,y and z agents that left & and Yy
types indifferent, while improving agent z’s welfare. Of course, this is a rare event
in the space of preference profiles. Here is a formalization of such scenarios.
J k .
For objects i,j,k and an agent z, we denote with p, (i, j, k) = 2*—% the marginal

rate of substitution between objects i and j for agent =z, after té;king k as the
residual alternative. This residual alternative is necessary since the agent’s bundle

cannot go beyond the simplex. The usual Z—; for linear utilities is not of use here.

If s > 2, and for the purpose of the next assumption, we can unify some object
types W c S into one object w with n* =37, ., n* and v¥ = max;ew v%, z € N, creating
a new "W —unification" economy E with object types S = {w} U S\W, with |S| > 3.

For a subset of object types S’ ¢ S and {i,4,k} c ', define the vector d,(i, j, k) €
RIS as: dL(i,j,k) = 0 for 1 ¢ {i,j, k}, di(i,j, k) = p,(i,4, k), di(i,j, k) = =1, d5(i,j, k) =
1—p,(4,j,k). This vector indicates the (unique) direction through which the agent’s
random assignment can be altered for objects i,j, k only, inside the $’—simplex,
so that the agent remains indifferent. Every such vector is well-defined under
Assumption 1.

Assumption 2: (Regularity) We assume that there is no W—unification economy
E with a subset of object types 8’ ¢ S, and a set of 7 = |S’|—1 agent - object set pairs

r=1...n
linearly dependent.

This assumption is the extension of the assumption in Bonnisseau, Florig and
Jofré (2001) for linear utility economies (in their Lemma 4.1), namely that there
is no cycle of marginal rates of substitution that multiplied altogether yield one.
Our assumption is more involved, since it embeds a cycle of p, operations, and
operations inside the operations. In fact, Assumption 2 includes the assumption
of Bonnisseau, Florig and Jofré (2001) as a special case. The proof is in the
appendix (Lemma 2), along with an example illustrating that the converse is not
true.

Remark 2 Notice, importantly, that the set of preference profiles satisfying As-
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sumptions 1 and 2 is dense in the preference profile space. Fven though all vectors
d have their elements adding up to zero, allowing for an elimination of one (the
same) coordinate from each vector, we are remained with one i x i square matrix
of corrected vectors d that is singular, if Assumption 2 is violated.

A crucial proposition, instrumental for a subsequent theorem, arises from these
assumptions.

Proposition 1 Let a price vector P* constitute a pseudomarket equilibrium for an
economy E with associated feasible random assignment Q*. Then, under Assump-
tions 1 and 2, there is no other feasible random assignment Q # Q* such that
Qe Vs = . - v, for every x € N.

Proof. In the Appendix. m
Then the following Theorem holds:

Theorem 2 Under Assumptions 1 and 2, if Q* is CWEE at economy E, it is also
ex-ante Pareto-optimal.

Corollary 2 Under Assumptions 1 and 2, every SP-equilibrium assignment Q* for
economy E s ex-ante Pareto-optimal at that economy.

Proof. We use Theorem 1: there is an ordered partition Ni,..., N, of the set N
such that Q* is a Sequential Pseudomarket equilibrium random assignment given
the ordered partition Ny, ..., N,. Consider Q* € @ not being ex-ante Pareto-optimal,
thus some feasible @ € Fr ex-ante Pareto-dominates Q*. Select t* = min{t € {1, ..., 7} :
Qn, # Qx,}. Since Q* is CWEE, it must be the case that Q. is ex-ante Pareto-
optimal in the remaining economy E; (when we only consider the agents in N
and the supply vector is n—3>,_,. > cn, ¢=)- Then ¢, -v. = ¢} - v, Vo € Ni-. But this
is in contradiction with Proposition 1 under Assumptions 1 and 2, since Qj, is a
pseudomarket equilibrium assignment for economy E;-. m

We could have side-stepped Assumptions 1 and 2 by imposing Pseudomarket
selection rules. For instance, we could have get rid of Assumption 1 if we im-
posed every agent to buy the cheapest bundle among her optimal choices (Hylland
and Zeckhauser, 1979). Similarly, a well-designed equilibrium selection proce-
dure would serve to eliminate the need for Assumption 2. Since suboptimality
implies multiplicity of equilibrium allocations under the same prices for some pri-
ority group, one just needs to construct a trial and error algorithm that picks the
"convenient" equilibrium allocation at each stage.

6 Conclusion

We have presented a new mechanism, Sequential Pseudomarket, that is partic-
ularly appealing in random assignment problems with object-invariant priority
rights. The set of equilibrium outcomes of this mechanism is characterized by the
also new concept of Consistent Weak Ex-ante Efficiency. Moreover, this concept of
efficiency is generically identical to the usual ex-ante Pareto-efficiency. Altogether,
an immediate application would be the random assignment problem with uniform
priorities such as seniority rights. For instance, if one is interested in finding an ex-
ante efficient assignment that respects seniority rights while avoiding envy among
agents of the same seniority group, the simplest answer would be: run a Sequential
Pseudomarket with Equal Incomes.
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7 Appendix

7.1 Proof of Proposition 1

Let a price vector P* constitute a pseudomarket equilibrium for an economy E
with associated feasible random assignment Q*. Then, under Assumptions 1 and
2, there is no other feasible random assignment @ # Q* such that ¢, -v, = ¢* - v, for
every x € N.

Proof. Take a feasible random assignment @ # Q* such that ¢, - v, = ¢* - v, Vo € N.
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Since by Assumption 1 no agent =z is indifferent between any two objects, we
cannot have P*.q, < P*. ¢ for any = € N, provided ¢, - v, = ¢% - v,. (Else ¢¢ would
not be an optimal choice with prices P*: being M, z’s certain assignment to her
unique most preferred object type, and for o > 0 small enough, aM, + (1 — a)q.
would be a better and affordable choice). Therefore P*.q, > P*. ¢ for all z € N.
On the other hand, we cannot have P*.q, > P*- ¢ for any € N. Otherwise we
would have >y ¢ > Y, oy ¢; for some object type i such that P* > 0. Since this
price is positive, it must be the case that Y- .\ ¢; = n". Hence Q is not feasible,
a contradiction. We conclude that P*.q, = P*- ¢ for all z € N. That is, Q is an
equilibrium assignment associated to P*.

Let W = {i € S : P** = 0}. Unify all object types Wlth zero price as the same
object type w. Its supply is n = 3=, .y, '. Each agent 2’s valuation for this object is
¥ = max;ew v%, = € N. Valuations for the remaining objects are unaltered: %’ = v
whenever j ¢ W. Consider such a W—unified economy with object types S =
{w}us\Ww. Obviously, there is a competitive equilibrium in this economy with prices
equal to P* = P*, i #w, and P** = 0. Equilibrium assignments are ¢** = 3",y ¢

and ¢ = ¢i*, i # w, for assignment Q* analogous to @*. An identical transformation
yields @ from Q. Notlce that Q # Q* implies Q # Q*, prov1ded Assumption 1. No
differences in the assignments @ and @Q* can only arise from differences in the
assignments of the free goods, since this latter fact is only possible when some
agent is indifferent between two free goods.

From now on we assume that |S| > 2. If | S| = 1 this would directly negate Q # Q*.
If |S| = 2 then for each agent the optimal choice is unique: either picking the free
good for sure, or combining the non-free good with the free good if necessary.
No indifference between these two options is possible since indifference between
them arises only if the agent is indifferent between the free object and the non-free
object. Once again, this would contradict Q # Q*.

Denote with A the (nonempty) set of agents « such that ¢, # ¢*. For each = € A,
let S, = {i e S:¢. +q¢* >0}, the set of objects with positive demand at either or
both allocations. The binding budget constraint guarantees that |S,| > 3 for each
z € A. (Either ¢, or ¢* or both contain at least two object types with positive
purchased probabilities. Assumption 1 ensures that only one optimally chosen
bundle may consist of a sure allocation of one object type). Since G, - 9, = G - ¥,
and P* . qx = P*.§* Yz € A, for each = € A there is a,, 3, > 0 such that for any i € S,
we have o = a, + 8, Pj*. Parmcularly, this implies that for any triple {i,j,k} C S, we

k
have p,(i,5,k) = 2=% = 27=E  Under Assumption 1 (no pairwise indifference),

oL —0k T pix_ Pk«

this is always well- deﬁned since P* = P* is in contradiction with both i and

k being purchased with posmve probability. Let ¥, denote the collection of all
three-element sets in S, : ¥, = {0 = {i,5,k} C S.}.

For each o € ¥, let §, be the only direction in the S—simplex in which one

can modlfy quantities of only obJects in o = {i,j,k} along the budget frontier (i.e.

0515 =0 and 6, - P* = 0): 6, = & Pk,éjz—l ok =1- Pk761_0f0rall

l1¢o (60 is well-defined under Assumptlon 1: recall that P‘* = P — o ¢ 3%,
for any = € A) Since 3, ,(G. — @) = 0 after the preceding W—unification, the
components of that sum can be ordered in a path (g, — §).ca that starts and ends
at the origin. We must then have at least one finite set of pairs agent - object
sets ({zr,0/})o,ex,, 1.7 that induce a collection of linearly dependent vectors
A ={6s,}o,ex, r=1..7. Should all elements in (§,)scx, sca be linearly independent,
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there would be no path (G, —§*).c4 from the origin back to the origin with one-shot
moves along different, linearly independent directions.

We can find a "multi-agent" A in the sense that U {z,} is not a singleton.

r=1...T

We show this by contradiction. Let X c A be the set of agents such that for each
z € X, the collection of elements in (§,),cx, is linearly dependent, but none of
its elements is linearly independent from (6,),ex, yea\ (s} By way of contradiction,
X # @, and the collection (6, ),es, yea\x Would contain linearly independent vectors,
among themselves and also with respect to (0, )scx, yea\x- But then, since the path
(G — @)zea starts and ends at the origin, we must conclude that 4 = X. But, again,
since for each x € X, the collection of elements in (J,),cx, is linearly independent
from (6,)ses, yex\(z}, €ach agent in X will have her own isolated path starting and
ending at the origin, that is, g, —g: = 0 for all z € X. This contradicts the definition
of A.

In the set D of all such "multi-agent" A’s, we focus on some A* € argminaep |A|
with the minimum number of vectors, a number we denote with 7. Let S =

U o.. Notice that m ¢ S’ implies that the corresponding coordinate for m
{65, A
is zero for every vector in A*. Then, provided the two constraints 4, - 1,5 = 0 and

8, - P* =0, there are at most |S’| — 2 independent vectors in A*. Actually, there are
exactly |S’| — 2 independent vectors, since 7 is minimal. This implies 7 = |5’ —2+1,
or |5 =@+ 1.

Now notice that for a Collectlon of vectors {d, € R'S Lo = (i,7,k)}s,ea meeting:

d, =0 for 1 ¢ o, di = 5=5— d = -1, d5 =1 - P’ > thls collection is linearly

dependent (1n comparlson to A*, we have only erased coordinates m ¢ §'.) Finally,

notice that % = p,(i,7,k) for every = € A such that {i,,k} € ¥,. This concludes

the proof, since we are contradicting Assumption 2. m

7.2 TIllustrations of Assumption 2

Assumption 2: (Regularity) We assume that there is no W—unification economy E
with a subset of object types §’ ¢ S, and a set of 7 = |S’| — 1 agent - object set pairs
{xy, {ir,jr by} }r=1, a such that (ds, (i, jr, kr))r=1.. 5 are linearly dependent.

We claim that this assumption can embed the assumption that bans multiplic-
ity of equilibria in linear utility economies. Indeed, there is no difference between
our model and a linear utility model when there is only one object type that is
affordable for every agent, which we call w. This object has zero price in equilib-
rium.

Lemma 2 For an economy E, let a Pseudomarket equilibrium price vector P* have
an associated random assignment Q* such that P* > P*.q: > P¥* =0, Vi € S\{w},
Vz € N. Then there is no other feasible assignment Q # Q* such that q, - v. = ¢ - v,
for every x € N if there is no cycle of agents and object types ({xr,i,})r=1,..7 (With
not all agents nor all objects identical) such that

,,,,,

Py (ilai27w) : sz(i%i&w) Tt pl‘ﬁfl(iﬁil’iﬁ’w> : pxﬁ(iﬁaihw) =1

Proof. We ignore the agents whose favorite object type is w. They obtain sure
assignment of this object in both allocations. The rest of agents have to choose
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among the different combinations of some object i # w and w. Hence is it without
loss of generality in this setup that we focus on d,(i, j, k) such that k¥ = w. Under
Assumption 2, there is no 7 x (7 4+ 1) matrix (where at least one agent is different)

1 —p, (i1,92,w)  py, (i1,42, w) -1 0 0 .
1 = py, (i2, i3, w) 0 P, (i2,i3,w)  —1 :
. . . . 0
L= pugy (a1, w) 0 0 T Py (i, w) -1
L= o (i1, 0) -1 0 0 Pay (i, i1, w)

with rank lower than 7. It means that the determinant of this matrix after we
eliminate the first column is zero. And this determinant is precisely

Pa, (ilviQ’w) 'p;cz(iQ’i?nw) T 'p;cﬁ,l(iﬁ—laiﬁvw) : p(tﬁ(iﬁ7i1?w) -1

proving the desired result. m

Notice that, if we normalize valuations by subtracting +* from all valuations of
agent z, and we do it for all = € N, we obtain the same condition as in Lemma 4.1
in Bonnisseau, Florig and Jofré (2001).

Assumption 2 in practice: a more complex example

We complete the appendix with an elaborate example that illustrates how As-
sumption 2 generally translates into a more complex relation among agents’ pref-
erences. Consider the following matrix:

1—pi(b,c,a) py(b,c,a) —1 0 0 0
-1 0 0 py(dya,e) 1—py(d,a,e) 0
0 -1 0 p3(d,b,f) 0 1_p3(d7b’f)
0 0 -1 0 1 —,04(f, ) 6) p4(f’ 876)
0 0 0 P5(d7€,f) -1 1*p5(d,€,f)

After erasing the last column, its determinant is
pl(bv ) a)pQ(da a, 6) - p2(d> a, e) - pl(ba Gy a)p3(d7 ba f) + pl(bv ) a)pf)(da 6, f)
+p2 (dv a, e)p5 (da €, f) — P4 (f7 ¢, e)p5 (dv €, f) - pl(bv & Cl)pg (d7 a, e)p5 (d7 €, f)

Since colinearity implies that this expression is zero, we can solve for p, (b, c,a)
as

de,
b _ _p4(f’c’e)%—p2(d,a,e)
pl( , C, G,) - ps(d,b,f)—ps(d.e,f) J
ey~ reldiae)

p4(fa C, 6)p5 (da fa 6) B p2(d7 a, 6)

4.6, F)—p- (doc,
PRl = pa(diae)

For the second equality, notice that 1—p, (i, j, k) = p,(k, j,4), and p, (i, j, k)/p, (k, j,7) =
—p,(i,k, 7). This example illustrates that Assumption 2 can be expressed as a con-
dition on a chain of multiplications of marginal rates of substitutions only in very
limited cases. In general, a violation of Assumption 2 implies that one marginal
rate of substitution (with a third alternative included) can be expressed as a chain
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of operators of the same type. In fact, for our example, one could create an imag-
inary agent y with preferences such that p,(b,c,a) = p,(b,c,a), p,(d,a,e) = py(d, a,e),
py(d,b, f) = p3(d,b, f), p,(fic,e) = py(ficie), and py(d,e, f) = ps(d,e, f). One could
rapidly check that

P (b c a) _ py(fa C, e)py(d, f, e) — py(d7 a, 6)
y oS T T dbD—p,(de ]
% —py(d,a,e)

= pyloylpy (b0, ), p,(d,b, f), p,(d e, )l pylo, (f:d,€), p,(f,cie), p,(f e €] py(d, ase)]
For the second equality we use the tricks p,(i,i,5) = 1, p,(i,5,7) = 0 and p, (4, ,k) =

1/p,(j,i, k). Notice that the p, operator appears inside another p, operator, and so
on.
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