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Abstract

We propose a pseudo-market mechanism for no-transfer allocation of indivisible ob-

jects that honors priorities such as those in school choice. Agents are given token money,

face priority-specific prices, and buy utility-maximizing assignments. The mechanism

is asymptotically incentive compatible, and the resulting assignments are fair and con-

strained Pareto efficient. Hylland and Zeckhauser (1979)’s position-allocation problem

is a special case of our framework, and our results on incentives and fairness are also

new in their classical setting.
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1 Introduction

We study the allocation of indivisible objects in settings where monetary transfers are pre-

cluded and agents demand at most one object. Examples include student placement in

public schools (where an object corresponds to a school seat and each object has multiple

copies) and allocation of office and living space (where each object has exactly one copy). A

common feature of these settings is that agents are prioritized. For example, students who

live in a school’s neighborhood or have siblings in the school may have admission priority in

this school over those who do not, and the current resident may have priority over others in

the allocation of the dormitory room he or she lives in.

The standard allocation mechanisms used and studied in these environments are ordinal:

students are asked to rank schools or rooms, and the profile of rankings they submit deter-

mines the lottery over assignments. However, Miralles (2008) and Abdulkadiroglu, Che, and

Yasuda (2011) pointed out that eliciting agents’ cardinal utilities—that is their rates of sub-

stitution between probability shares in objects—may allow us to implement Pareto dominant

assignments (cf. also Ergin and Sonmez (2006)). Furthermore, Liu and Pycia (2012) and

Pycia (2014) showed that in large markets sensible ordinal mechanisms are asymptotically

equivalent while mechanisms eliciting cardinal utilities maintain their efficiency advantage.1

This paper addresses the question of how to improve upon the ordinal mechanisms while

honoring priorities. We construct an asymptotically incentive compatible and fair mechanism

that honors priorities and is constrained efficient among stable and fair mechanisms. A

mechanism honors priorities if no probability share of an object is given to an agent with

lower priority at this object when a higher-priority agent prefers this object to some object

in the support of his or her assignment. In the domain of deterministic assignments, this

concept is known as stability or the elimination of justified envy (see e.g., Abdulkadiroglu

and Sonmez (2003)); it is extended to random assignments and defined as ex ante stability

by Kesten and Ünver (2015). We use the strong fairness concept, equal claim, proposed by

1The data on Boston and NYC school choice corroborates both the equivalence of ordinal mechanisms
(see e.g., Pathak and Sonmez (2008) and Abdulkadiroglu, Pathak, and Roth (2009)) and the inefficiency of
ordinal mechanisms (Abdulkadiroglu, Agarwal, and Pathak 2015). For analysis of ordinal mechanisms see
the seminal work of Abdulkadiroglu and Sonmez (2003)) and Bogomolnaia and Moulin (2001). C.f. also the
literature discussion below for other papers emphasizing the need to elicit cardinal information.
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He, Li, and Yan (2015); a mechanism satisfies equal claim if agents with the same priority

at an object are given the same opportunity to obtain it.

We refer to our construction as the pseudo-market mechanism (PM) since the mechanism

extends the canonical Hylland and Zeckhauser (1979) mechanism by incorporating priorities.2

The mechanism elicits cardinal preferences from agents and computes a random assignment

that maximizes each agent’s expected utility given prices and the agent’s exogenous budget.

The random assignment is a Walrasian equilibrium as in Hylland and Zeckhauser’s work,

except that we allow prices to depend on agents’ priorities. For each object, there exists a

cut-off priority group such that agents in priority groups strictly below the cut-off face an

infinite price for the object (hence, they can never be matched with the object), while agents

in priority groups strictly above the cut-off face zero price for the object.

We establish the existence of the above-mentioned Walrasian equilibrium, and the result-

ing PM mechanism is shown to be asymptotically incentive compatible in regular economies,

where regularity guarantees that Walrasian prices are well defined as in the classical analysis

of Walrasian equilibria (see e.g., Dierker (1974), Hildenbrand (1974), and Jackson (1992)).

The latter result is also new in the original Hylland and Zeckhauser (1979) problem and

proves the long-standing conjecture they formulated.3 As in the setting without priorities

(see e.g., Abdulkadiroglu, Che, and Yasuda (2011) and Pycia (2014)), the PM mechanism

allows one to achieve higher social welfare than mechanisms eliciting only ordinal preferences

such as the Probabilistic Serial and the Deferred-Acceptance mechanisms.

The PM mechanism honors priorities because of our design of the priority-specific prices.

Given an object s and its cut-off priority group, whenever a lower-priority agent obtains a

positive share of s, a higher-priority agent must face a zero price for s, and, therefore, is

never assigned to an object they prefer less than s.

2The PM mechanism may also be interpreted as a generalization of the Gale-Shapley deferred-acceptance
mechanism with ties broken endogenously and efficiently by the information on cardinal preferences. Agents
with relatively higher cardinal preferences for an object obtain shares of that object before others who are
in the same priority group.

3Stating the true preferences in the PM mechanisms is not always a dominant strategy for every agent.
Hylland and Zeckhauser (1979) give an example where there are incentives for agents to misreport their
preferences when objects do not rank agents. More generally, Roth (1982) and Zhou (1990) show strategy-
proofness is in conflict with other desirable properties. In addition to proving the asymptotic incentive
compatibility of the PM mechanism in regular economies, we also prove that it is limiting incentive compatible
in the sense of Roberts and Postlewaite (1976).
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We study fairness of the PM mechanism in the sense of equal claim, which requires that,

for any given object, agents with the same priority are given the same opportunity to obtain

this object.4 Since prices for agents in the same priority group are by construction the same

in the PM mechanism, we can conclude that equal claim is satisfied when agents are given

equal budgets. Furthermore, we show that the PM mechanism in which agents have equal

budgets is the only non-wasteful mechanism that honors priorities and satisfies equal claim.

Focusing on random assignment that honors priorities and equal-claim, we analyze ef-

ficiency: a random assignment is constrained Pareto efficient if no other assignment that

honors priorities and satisfies equal claim dominates it in terms of agents’ welfare.5 An im-

portant corollary of our results is that the constrained Pareto efficient assignment is always

an outcome of the PM mechanism with equal budgets.

Moreover, one may be interested in two-sided efficiency if the priority structure is closely

related to object suppliers’ preferences, e.g., when schools’ priority ranking over students

reflect a school district’s preferences. A random assignment is ex ante two-sided Pareto

efficient if it is not Pareto dominated by any other assignment with respect to both agents’

expected utilities and objects’ priorities treated as their ordinal preferences. When the

welfare of objects is evaluated in terms of first-order stochastic dominance with respect to

priorities (an object is better off if agents matched with this object in the new assignment

first-order stochastically dominate those of the old one) then PM always delivers random

assignments that satisfy ex ante two-sided efficiency.

Given these desirable properties, PM is a promising mechanism that can be used in

school choice, dormitory room allocation, and other allocation problems based on priorities.

Moreover, it is flexible enough to accommodate additional constraints such as group-specific

quotas.

4See He, Li, and Yan (2015) for an analysis of this concept in the setting without priorities. Note that
equal claim does not imply that same-priority agents at an object receive the same probability share at that
object in the final assignment.

5The literature on ordinal mechanisms that follows Bogomolnaia and Moulin (2001) defines efficiency in
terms of first-order stochastic dominance; since we study expected-utility-maximizing agents, we can use the
standard Pareto efficiency concept. It should be noted that there are priority structures and priority-honoring
assignments that are Pareto dominated by assignments that do not honor priorities; Abdulkadiroglu and
Sonmez (2003) construct relevant examples in the ordinal setting, and the same examples remain valid in
our setting.
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Literature Review The early literature on school choice, the focal topic of priority-

based allocation, e.g., Abdulkadiroglu and Sonmez (2003) and Ergin and Sonmez (2006),

followed the two-sided matching literature where it is common to assume that both sides

strictly rank the other side. Implicitly, weak priorities are augmented with random lotteries

to create strict priorities. It has been noted that when priorities are coarse, some issues

arise. For example, stability no longer implies Pareto efficiency (Erdil and Ergin 2006); and,

more importantly, how ties are broken affects the welfare of agents since it introduces arti-

ficial constraints. Extending the Gale-Shapley Deferred-Acceptance mechanism (defined in

Appendix A) Erdil and Ergin (2008) propose an algorithm for breaking priority ties and the

computation of agent-efficient stable matchings when priority rankings are weak and only

ordinal information is elicited. The two algorithms proposed by Kesten and Ünver (2015) of-

fer further ways to break priority-ties in ordinal settings. However, Abdulkadiroglu, Pathak,

and Roth (2009) and Kesten (2010) show that the inefficiency associated with a realized tie

breaking in ordinal setting cannot be removed without harming student incentives.

Noting that agents may differ in their cardinal preferences, a strand of literature (e.g.,

Featherstone and Niederle (2008), Miralles (2008), Abdulkadiroglu, Che, and Yasuda (2011),

Troyan (2012), Pycia (2014), Abdulkadiroglu, Che, and Yasuda (2015), and Ashlagi and Shi

(Forthcoming)) emphasizes the importance of eliciting signals of cardinal preferences from

agents in matching mechanisms.6 Ties in priorities can be broken with such signals, al-

though the space of preference profiles or signals considered in these papers is restricted.

Our PM mechanism elicits the entire relevant utility information in a general setting. More-

over, compared to discrete signals of cardinal preferences such as those in the popular Boston

mechanism (defined in Appendix A), the PM mechanism has the advantage of being (asymp-

totically) incentive compatible. It has been shown theoretically (e.g., Pathak and Sonmez

(2008)), experimentally (e.g., Chen and Sonmez (2006)), and empirically (e.g., Abdulka-

diroglu, Pathak, Roth, and Sonmez (2006), He (2012)), that strategic considerations may

put less sophisticated agents at a disadvantage. More importantly, these effects do not dis-

appear in large markets (Azevedo and Budish 2012). PM thus “levels the playing field” by

6In recent work, Lee and Yariv (2014) and Che and Tercieux (2014) show that when agent’s utilities come
from independent distributions, some ordinal mechanisms can be efficient.
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eliminating this strategic concern while keeping the benefits of using cardinal preferences.

Our paper offers the first pseudo-market construction that honors priorities.7 In addition,

we also contribute to the growing literature on pseudo-market mechanisms in settings without

priorities. The idea was first formulated by Hylland and Zeckhauser (1979). Miralles (2008)

establishes a connection between the mechanism and the Boston mechanism in settings

without priorities. Budish (2011) and Budish, Che, Kojima, and Milgrom (2013) extend the

pseudo-market mechanism to multi-unit demand settings such as course scheduling. Miralles

and Pycia (2014) show that every efficient assignment can be decentralized through prices,

establishing the Second Welfare Theorem for the no-transfer setting without priorities. He,

Li, and Yan (2015) make the point that any random assignment, not necessarily efficient,

can be decentralized by personalized prices.

Our analysis of fairness is related to Ashlagi and Shi (Forthcoming) who study a model

with a continuum of agents without priorities and show that the equal-budget pseudo market

can implement any envy-free and Pareto efficient assignment. Envy-freeness is a weaker

fairness property than equal claim, and the characterization of the equal-budget pseudo

market in terms of envy-freeness and efficiency does not extend to large finite economies (see

Miralles and Pycia (2015)).

Our analysis of the pseudo-market mechanism’s asymptotic incentive compatibility ad-

dresses a long-standing open problem posed by Hylland and Zeckhauser (1979). We build

on the classic literature on the price-taking behavior of agents in exchange economies, e.g.,

Roberts and Postlewaite (1976) and Jackson (1992). The only earlier analysis of incentive

compatibility of PM without priorities is Azevedo and Budish (2012) who show that it sat-

isfies the strategy-proofness-in-the-large criterion that they introduce provided that budgets

are equal and the number of utility types is finite and stays bounded as the market grows.

Our result does not hinge on either of these assumptions.8

7Notice that our paper subsumes He (2011), Miralles (2011), He and Yan (2012), and He, Miralles, and
Yan (2012) who proposed this construction and proved it is well-defined. Subsequent work on personalized
prices in pseudo-markets (e.g. Ashlagi and Shi (Forthcoming) and He, Li, and Yan (2015)) did not address
the question of when personalized-price mechanisms honor priorities.

8Building on their work, one can show that PM satisfies their criterion in settings with priorities (details
available upon request). Work on other related mechanisms includes Miralles (2012), Pycia (2014), and
Hafalir and Miralles (2014) who study incentive compatible efficient mechanisms in specific parametric
settings. Hashimoto (2013) constructs an ex post incentive-compatible mechanism that becomes efficient in
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Organization of the Paper Section 2 sets up the model for the priority-based allo-

cation problem. Section 3 defines the PM mechanism and establishes that it is well-defined.

Section 4 investigate its incentive compatibility. We present fairness properties of PM and

its characterization in Section 5. Section 6 discusses results on the efficiency advantage of

PM relative to some well known mechanisms. The paper concludes in Section 7.

2 Model

We consider a priority-based allocation problem, or an economy, Γ = {S, I, Q, V,K}, where:

(i) S = {s}Ss=1 is a set of objects;

(ii) I = {i}Ii=1 is a set of agents, each of whom is to be matched with exactly one copy of

an object;

(iii) Q = [qs]
S
s=1 is a capacity vector, and qs ∈ N is the supply of object s, ∀s. For simplicity,

we assume that
∑S

s=1 qs = I, i.e., there are just enough copies of objects to be allocated

to agents; the extension to
∑S

s=1 qs 6= I is straightforward.

(iv) V = [vi]i∈I , where vi = [vi,s]s∈S and vi,s ∈ [0, 1] is agent i’s von Neumann-Morgenstern

(vN-M) utility associated with object s.

(v) K = [ks,i]i∈I,s∈S , where ks,i ∈ K ≡
{

1, 2, ..., k
}

is the priority group of agent i at object

s, and k (≤ I) is the maximum number of priority groups.9 Therefore, ks,i < ks,j if and

only if i has a higher priority at object s than j’s. We allow both strict and coarse

priority structures, in particular, the special case of interest when all agents have the

same priority (the no-priority case).10

large markets. Nguyen, Peivandi, and Vohra (2015) introduce an optimization-based efficient mechanism
that is strategy-proof-in-the-large. The asymptotic incentive properties of ordinal matching mechanisms
have also been studied, e.g., Kojima and Pathak (2009), Kojima and Manea (2010), Kojima, Pathak, and
Roth (2013), Liu and Pycia (2012), Lee (2014), and Ashlagi, Kanoria, and Leshno (2014).

9It is innocuous to assume that every object has the same number of priority groups, as there might be
no agent in a particular group of an object.

10Our results on incentive compatibility and fairness are also new in this classical case.
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All objects and agents are acceptable to the other side, i.e., every agent considers ev-

ery object better than being unassigned and is qualified to be assigned to any object, al-

though the analysis can be extended to the setting with unacceptable objects/agents. Agents

are assigned to objects under the unit-demand constraint such that each agent must be

matched with exactly one object. In the following, unless otherwise stated, we require non-

wastefulness such that all copies of every object are to be assigned to some agents. Given

the acceptability of everyone on both sides, wastefulness clearly leads to Pareto inefficiency.

A random assignment is a matrix Π = [πi]i∈I ; πi = [πi,s]s∈S and πi,s ∈ [0, 1] is agent i′s

probability share of object s, or the probability that agent i is matched with object s; the

unit-demand constraint implies that
∑

s∈S πi,s = 1 for all i, and non-wastefulness leads to∑
i∈I πi,s = qs for all s. The set of all such random assignments is denoted as A.

If there exists si for every i such that πi,si = 1 and πi,s = 0, ∀s 6= si, Π is a deterministic

assignment. Every feasible random assignment can be decomposed into a convex combination

of deterministic assignments and can therefore be resolved into deterministic assignments

(Kojima and Manea 2010), which generalizes the Birkhoff-von Newmann theorem (Birkhoff

1946, von Neumann 1953). Notice that the convex combination may not be unique in general.

Given objects’ priorities and supply, a matching mechanism is a mapping from agents’

reported preferences, either cardinal or ordinal, to the space of random assignments, A.

3 The Pseudo-Market Mechanism

Fix the structure of priorities K, the capacities Q, and the (reported) utilities V = [vi]i∈I ,

the pseudo-market mechanism (PM) with budgets [bi]i∈I , bi ∈ (0, 1], calculates a feasible

random assignment [πi]i∈I , and a price vector P = [ps,k]s∈S,k∈K ∈ P ≡[0,+∞]S×k, where ps,k

is the price of object s for agents in s’s priority group k, by solving the utility maximization

problem for all i,11

πi (vi, P ) ∈ arg max
πi,s

∑
s∈S

πi,svi,s

11If ps,k = +∞, we define +∞ · 0 = 0 and +∞ · πi,s = +∞ if πi,s > 0. As in Hylland and Zeckhauser’s
pseudo-market, we can implement any feasible random assignment as a lottery over feasible deterministic
assignments.
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subject to:

(i) feasibility constraint:
∑
i∈I

πi,s (vi, P
∗) ≤ qs for all objects s;

(ii) budget constraint:
∑
s∈S

ps,ks,iπi,s ≤ bi and the stipulation that if there are multiple

bundles maximizing her expected utility then a cheapest one is chosen.

(iii) priority constraint: k∗ (s) is the cut-off priority of object s if
∑

i∈I, ks,i<k∗(s)

πi,s (vi, P
∗) <

qs and
∑

i∈I, ks,i≤k∗(s)
πi,s (vi, P

∗) = qs; moreover,

p∗s,ks,i = 0, if ks,i < k∗ (s) ,

p∗s,ks,i ∈ [0,+∞), if ks,i = k∗ (s) ,

p∗s,ks,i = +∞, if ks,i > k∗ (s) .

In the setting in which all agents have the same priority at all objects (i.e., no priorities),

the priority constraint (iii) reduces to prices being non-negative and finite.

Remark 1 PM accommodates personalized exogenous budgets, but to economize on nota-

tions, we focus on PM with equal budgets such that bi = 1 for all i and refer to PM with

equal budgets simply as PM. It should be noted that all results except fairness in Section 5

extend to PM with unequal budgets as long as budgets do not depend on reported utilities.

Remark 2 PM restricts the price structure such that prices are priority-specific and increase

when we move down on the priority list. If s is consumed completely by agents in priority

groups k∗ (s) and above, agents in s’s priority groups strictly below k∗ (s) face an infinite

price, while those in priority groups strictly above k∗ (s) face a zero price. Section 5 discusses

the implications of such a price structure.

Remark 3 PM treats objects’ priorities as agents’ rights to obtain an object at a lower,

sometimes zero, price. Whenever some agents with lower priorities can get a positive share

of an object, an agent with a higher priority at that object can always get it for free. More

importantly, agents can choose not to exercise the right if they wish, but they cannot trade

priorities. This interpretation is similar to the consent in Kesten (2010) that allows agents
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to waive a certain priority at an object, but in contrast to the treatment in the top-trading-

cycle mechanism which implicitly allows agents to trade their priorities (Abdulkadiroglu and

Sonmez 2003).

Our first main result is the existence of the PM outcome.

Theorem 1 Given any reported preferences, there always exists an equilibrium price matrix

in the PM mechanism.

This key result shows that the PM mechanism is well-defined. The analogous result was

proven by Hylland and Zeckhauser (1979) for the classical economy without priorities. The

result is new for the case with priorities; the challenge in obtaining the result is the need

to incorporate the priority condition (iii).12 This condition is crucial in ensuring that the

mechanism honors priorities (Section 5).

Note that an economy can have more than one PM equilibrium price matrix and multiple

PM assignments, and therefore a complete specification of the mechanism must prescribe a

price selection rule.13 Our main results are robust to arbitrary selection rules, except those

on incentive compatibility in the next section, which address the selection issue directly.

4 Asymptotic Incentive Compatibility

Our next analysis focuses on asymptotic incentive compatibility in sequences of replica

economies,14 and considers PM’s incentive properties in large markets. For any base econ-

omy Γ = {S, I, Q, V,K}, we use Γ(n) =
{
S, I(n), Q(n), V (n), K(n)

}
to denote an n-fold replica

of Γ which is an economy such that: (i) for each i ∈ I, there are n copies of i in I(n)

whose preferences and priorities are exactly the same as i; (ii) S is constant in all economies;

and (iii) Q(n) = nQ, or equivalently q
(n)
s = nqs for all s and n. In the sequence of replica

12Our paper subsumes He and Yan’s and Miralles’s work, who independently proposed the construction
of priority-honoring pseudo markets.

13In the market design literature, Kovalenkov (2002) is another exception to explicitly consider selection
rules in an approximate Walrasian mechanism.

14Given the impossibility result in Zhou (1990) and the example in Hylland and Zeckhauser (1979), it is
known that agents may have incentives to misreport their preferences in any finite market. See the end of
this section for an extension beyond replica economies, and Appendix C for an analysis of the limit incentive
compatibility concept defined by Roberts and Postlewaite (1976).
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economies
{

Γ(n)
}
n∈N, each Γ(n) has n copies of the base economy Γ. Notice that the set of

pseudo-market prices is constant along any sequence of replica economies, provided that all

agents report truthfully.

We consider a natural analogue of regular economies from the general equilibrium liter-

ature (e.g., Dierker (1974), Hildenbrand (1974), Jackson (1992)).15 To define this regularity

concept, we use the Prohorov metric ρ to measure the distance between two distributions,

µ and ν:

ρ (µ, ν) = inf
{
ε > 0|ν (E) ≤ µ (Bε (E)) + ε & µ (E) ≤ ν (Bε (E)) + ε, E ⊆ [0, 1]S×I Borel

}
.

A distribution of utilities µ∗ is regular if there exists a neighborhood B of µ∗ and a finite

number m > 0 of continuous functions ψ1, ..., ψm from B to [0,+∞]S×k such that for every

distribution µ ∈ B the set of PM equilibrium prices is {ψ1 (µ) , ..., ψm (µ)} and ψi (µ) 6= ψj (µ)

for every i 6= j. An economy Γ is regular if the corresponding distribution of utilities is

regular. The proofs for this section show that if the base economy is regular then so is any

replica economy.

Our second main result is the asymptotic incentive compatibility of PM. A mechanism is

asymptotically incentive compatible on a sequence of replica economies Γ(n) if for every

agent the utility gain from submitting a utility profile different from the truth vanishes

along the sequence. That is, for every ε > 0, there exists n∗ such that n > n∗ implies that

the utility gain from unilateral misreporting for every agent in Γ(n) is bounded by ε when

everyone else is truth-telling.

Theorem 2 There always exists a selection of equilibrium prices in the PM construction

such that the resulting PM mechanism is asymptotic incentive compatible on any sequence

of replica economies whose base economy has a regular distribution of utilities.

Note that Theorem 2 shows that the utility gain from unilateral misreporting is bounded

for all agents in a large enough economy. An analogue of this result remains true beyond

15For simplicity we follow Jackson (1992) in defining regularity directly in terms of price behavior; alter-
natively we could express the definition of regularity in terms of properties of excess demand functions as in
Dierker (1974) and Hildenbrand (1974).
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replica economies: our proof of Theorem 2 also implies that the gain from manipulation

for any agent who is present in all economies in a sequence vanishes as the economy grows,

provided that the limit distribution of utilities is regular.16

Theorem 2 is new not only in the setting with priorities, but also in the canonical setting

without priorities first studied by Hylland and Zeckhauser (1979).17 While Hylland and

Zeckhauser conjectured that their mechanism is asymptotically incentive compatible, their

conjecture has so far remained open. The closest prior result was obtained Azevedo and

Budish (2012) who introduced the concept of strategy-proofness-in-the-large and in a discrete

setting proved that every envy-free mechanism is incentive compatible in their sense. In

particular, their result implies that Hylland and Zeckhauser’s mechanism with equal budgets

is strategy-proof-in-the-large in large economies with a bounded number of utility types.

Their approach hinges both on the equality of budgets and on there being a bounded number

of possible utility types; in contrast our result is valid in the standard model that allows a

continuum of utility types and it is valid for any profile of budgets.

5 Priority-Honoring and Fairness

We now discuss the priority-honoring and fairness properties of PM assignments. Given the

priority structure, we show that the set of equal-budget PM assignments is equivalent to the

set of assignments that honor priorities (or thos that are ex ante stable as in Kesten and

Ünver (2015)) and satisfy “equal claim” as in He, Li, and Yan (2015).

5.1 Priority-Honoring

The key property of PM is that it honors priorities in the sense of ex ante stability introduced

by Kesten and Ünver (2015). We say that a random assignment Π causes ex ante justified

envy of i ∈ I toward j ∈ I\ {i} if ∃s, s′ ∈ S such that vi,s > vi,s′ , ks,i < ks,j, πj,s > 0, and

πi,s′ > 0. That is, a higher-priority agent i (at s) has justified envy towards lower-priority

agent j (at s) if j has positive probability of an object s, while i has positive probability of an

16In addition, Appendix C shows that the PM mechanism is limiting incentive compatible in the sense of
Roberts and Postlewaite (1976).

17See also e.g., Budish, Che, Kojima, and Milgrom (2013)
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object that is worse than s in i’s preferences. If a random assignment causes ex ante justified

envy, it is not guaranteed that its implementation always leads to deterministic assignments

that are justified-envy-free (also known as stability (Abdulkadiroglu and Sonmez 2003)).18

A random assignment is ex ante stable if it does not cause any ex ante justified envy.

In defining PM we restrict the price structures to be such that the prices are 0 above the

cut-off priority group and infinity below the cut-off. This restriction guarantees that PM

is ex ante stable; in fact, such a restriction is also necessary for ex ante stability. To see

the necessity and sufficiency of this restriction, we relax the PM construction by allowing

the prices to be agent-specific (i.e., personalized) as in He, Li, and Yan (2015). With such

personalized prices, we can normalize each agent’s possibly-unequal budget to be 1 without

loss of generality.

We first restrict ourselves to the set of non-wasteful assignments. Given an economy

Γ, the set of all possible “equilibrium” personalized prices PΓ and the associated set of

non-wasteful assignments ΠΓ are defined as follows:

(i) For a given personalized price vector Pi = [pi,s]s∈S ∈ [0,+∞]S where pi,s is the price

of object s for agent i, we construct the demand correspondence of agent i, π∗i (vi, Pi),

that maximizes
∑

s∈S πi,svi,s subject to
∑

s∈S pi,sπi,s ≤ 1 among feasible πi such that∑
s∈S πi,s = 1 and πi,s ≥ 0 for all objects s.

(ii) The set of “equilibrium” personalized prices:

PΓ ≡

{
P ∗ = [P ∗i ]i∈I ∈ [0,+∞]I×S |∃πi ∈ π∗ (vi, P

∗
i ) ,

∑
i∈I

π∗i,s ≤ qs, ∀i ∈ I, ∀s ∈ S

}
.

(iii) The set of associated assignments is ΠΓ (P ∗) ≡
{

[πi]i∈I ∈ A|πi ∈ π∗ (vi, P
∗
i ) , ∀i ∈ I

}
for P ∗ ∈ PΓ, and ΠΓ ≡ ∪P ∗∈PΓ

ΠΓ (P ∗).

In other words, PΓ is the set of all possible personalized prices that can rationalize some

assignment as a result of agents’ utility maximization (given budgets); ΠΓ (P ∗) is the set of

assignments corresponding to P ∗; and ΠΓ is the set of all possible assignments that can be

18Many school districts insist on avoiding justified envy, for example, NYC (Abdulkadiroglu, Pathak, and
Roth 2005) and Boston (Abdulkadiroglu, Pathak, Roth, and Sonmez 2005).
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supported as a result of agents’ utility maximization. Of course, every feasible assignment

can be represented in this way, i.e., ΠΓ = A (see He, Li, and Yan (2015) for details).

By definition and given that
∑

s∈S qs = I, PM restricts prices to be in the following set:

PStableΓ ≡

P ∗ ∈ PΓ|∀s,∀π ∈ ΠΓ (P ∗) ,∃k′, p∗i,s =


0 if

∑
j∈I s.t. ks,j≤k′

πj,s < qs & ks,i < k′

+∞ if
∑

j∈I, s.t. ks,j≤k′
πj,s = qs & ks,i > k′

 .

By our Theorem 1, PStableΓ 6= ∅, and thus the set of assignments ΠStable
Γ ≡ ∪P ∗∈PStable

Γ
ΠΓ (P ∗) is

also non-empty. Furthermore, ΠStable
Γ corresponds exactly to the set of ex ante stable assignments.

Proposition 1 ΠStable
Γ is the set of all non-wasteful ex ante stable random assignments.

In particular, given the construction of PM:

Corollary 1 Every PM assignment is ex ante stable.

Remark 4 It should be emphasized that the above result is also true for PM with unequal budgets.

Since prices are either zero or infinite except for those in the cut-off priority groups, a lower or

higher budget would only change the probability shares that one can obtain in the objects where he

or she is in the cut-off group. This certainly does not lead to violations of the requirement of ex

ante stability.

Remark 5 The above construction can be naturally extended to possibly wasteful assignments, i.e.,∑
i∈I

πi,s = q′s ≤ qs for all schools. The real capacities (qs) are replaced by “wasteful” ones (q′s) to

form the “market-clearing” conditions, exactly satisfying the wastefulness.

5.2 Equal claim

The PM mechanism satisfies the strong fairness criterion of equal claim, introduced by He, Li, and

Yan (2015) in a setting without priorities.19

Definition 1 An ex ante stable random assignment Π satisfies equal claim if and only if ∃P ∗ ∈

PStableΓ such that Π ∈ ΠΓ (P ∗) and that for any s, p∗i,s = p∗j,s whenever ks,i = ks,j.

19See their work for a motivating discussion of this property.
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That is, an ex ante stable assignment Π satisfies equal claim if Π is an expected-utility-

maximization outcome as if everyone has an equal budget and those in any given priority group

of s face an equal price of s. Note that this definition allows Π to be wasteful. Nonetheless, the

definition of PM, Theorem 1, and Corollary 1 together imply that in any economy Γ there exists a

non-wasteful ex ante stable random assignment satisfying equal claim.

5.3 Characterization

In the characterization, we again require non-wastefulness, i.e., there is no positive probability

share of any object being unassigned should there exist an agent willing to obtain it within the

unit-demand constraint.

Theorem 3 The set of PM assignments is equivalent to the set of non-wasteful assignments sat-

isfying both ex ante stability and equal claim.

In the special case where agents’ preferences and objects’ priorities are both strict, we have the

following result.

Theorem 4 If both agents and objects rank the other side strictly, the set of PM assignments is

equivalent to the set of stable assignments.

6 Efficiency

The results of the previous section imply that no mechanism that honors priorities and is fair in the

sense of equal claim can dominate PM in efficiency terms. We now illustrate via examples how PM

can dominate other mechanisms.20 Given our incentive compatibility result, we assume everyone

is truth-telling under PM.

A random assignment Π′ ∈ A is ex ante Pareto dominated for agents by another random

assignment Π ∈ A if ∑
s∈S

πi,svi,s ≥
∑
s∈S

π′i,svi,s,∀i ∈ I,

and at least one inequality is strict. A random assignment is ex ante agent-efficient if it is not

Pareto dominated for agents by any other feasible random assignment. The definition can be readily

20The fact that some of the mechanisms we study can be dominated is known, see Ergin and Sonmez
(2006), Abdulkadiroglu, Che, and Yasuda (2011), Troyan (2012), and Pycia (2014).
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extended to deterministic assignments, and every deterministic assignment in any decomposition

of an ex ante agent-efficient random assignment is Pareto optimal for agents.

In general, PM cannot achieve ex ante agent-efficiency due to the priority structure, and The-

orem 3 implies that any agent-efficient assignment satisfying priority-honoring and equal claim is

a PM assignment.

The unique feature of PM is that it elicits and uses cardinal preferences to make the assignment.

This implies that the outcome has the potential to be more efficient than ordinal mechanisms. In

a one-sided setting (i.e., no priorities), Abdulkadiroglu, Che, and Yasuda (2011) show cardinal

mechanisms can dominate ordinal ones, and, building on subsequent analysis by Pycia (2014), we

extend this result to the setting with priorities.

The following definition is useful for the comparison.

Definition 2 A random assignment Π∗ is ordinally efficient if there does not exist Π 6= Π∗ such

that: ∑
s′ s.t. vi,s′≥vi,s

π∗i,s′ ≤
∑

s′ s.t. vi,s′≥vi,s
πi,s′ , ∀s ∈ S, i ∈ I,

where at least one inequality is strict. Π∗ is symmetric ordinal efficient if furthermore π∗i,s = π∗j,s,

∀s, whenever i and j have the same ordinal preferences.

6.1 The Cost of Ordinality

The following example, based on Pycia (2014), illustrates the extent to which restricting ourselves

to ordinal mechanisms may result in an efficiency loss.

Example 1 Let us consider the following economy with four agents (i1, ..., i4) and four objects

(s1, ..., s4) with one copy of each available:

Cardinal Preferences

Objects

Agent s1 s2 s3 s4

i1 1 ε ε2 0

i2 1 1− ε ε2 0

i3 1 ε2 1− ε 0

i4 1 ε2 ε 0

0 < ε < 0.5

Priority Structure

Objects

Agent s1 s2 s3 s4

i1 1 2 2 1

i2 1 2 1 1

i3 1 1 2 1

i4 1 2 2 2

Smaller number means higher priority.
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Note that no pair of agents has the same priorities at all objects. The following prices and assign-

ment is an equilibrium outcome of PM:

PM Priority-Specific Prices

Objects

Agent s1 s2 s3 s4

i1 2 1 1 0

i2 2 1 0 0

i3 2 0 1 0

i4 2 1 1 0

PM Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/2 0 0 1/2 1/2

i2 0 1 0 0 1− ε

i3 0 0 1 0 1− ε

i4 1/2 0 0 1/2 1/2

Like in Pycia (2014), we can replicate this example and compare PM with “best” ordinal mechanisms

ignoring the priority constraint because Liu and Pycia (2012) showed that in large economies,

all regular, asymptotically strategy-proof, asymptotically symmetric, and asymptotically efficient

ordinal mechanisms deliver outcomes asymptotically equivalent to the symmetric ordinal efficient

assignments.

PS: Symmetric Ordinally Efficient Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/4 1/2 0 1/4 (1 + 2ε)/4

i2 1/4 1/2 0 1/4 (3− 2ε)/4

i3 1/4 0 1/2 1/4 (3− 2ε)/4

i4 1/4 0 1/2 1/4 (1 + 2ε)/4

Can be achieved by the Probabilistic Serial.

The above assignment can be implemented by the Probabilistic Serial (PS) whose definition is

in Appendix A. Given that 0 < ε < 0.5, the above PS assignment is Pareto dominated by the PM

assignment in terms of agent welfare, despite the fact that the PS assignment ignores priorities.21

21For PS that takes priorities into account, see Afacan (2015). Such extensions of PS yield assignments
that are dominated by those from standard PS.
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6.2 Comparison with the Gale-Shapley Deferred-Acceptance Mech-

anism

The Gale-Shapley Deferred-Acceptance mechanism (DA), whose definition is also available in Ap-

pendix A, is a mechanism that has attracted the most attention both in the literature as well as in

practice. When it is implemented in settings where priorities are coarse/weak, some tie-breaking

rule is needed. For example, following reforms in NYC and Boston, the school choice program

uniformly randomly chooses a single tie-breaking order for equal-priority students at each school

and then employs the student-proposing DA using the modified priority structure.

From the perspective of tie-breaking, one may view PM as a version of DA with coarse priorities

on one side. The unique feature of PM is that the ties are broken endogenously according to cardinal

preferences. The following example shows a case where PM dominates DA.

Example 2 In the same setting as in Example 1, the random assignment from DA with single

tie-breaking (DA-STB) is as follows:

The DA-STB Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/4 1/6 1/12 1/2 (3 + 2ε+ ε2)/12

i2 1/4 7/24 11/24 0 (13− 7ε+ 11ε2)/24

i3 1/4 11/24 7/24 0 (13− 7ε+ 11ε2)/24

i4 1/4 1/12 1/6 1/2 (3 + 2ε+ ε2)/12

DA-STB: The DA mechanism with single tie-breaking.

It is Pareto dominated by the PM assignment in terms of agents’ expected utility for ε ∈ (0, 0.5).

It should be noted that Kesten and Ünver (2015) extend DA and propose two variants to deal

with the tie-breaking on the object side. Since their mechanisms still rely on ordinal preferences

of agents, the cost of ordinality (Section 6.1) still applies. Empirically, Abdulkadiroglu, Agarwal,

and Pathak (2015) use data from the NYC high school match to show that possible improvements

upon DA from various ordinal mechanisms are rather limited. In fact, the best outcomes that the

mechanisms in Kesten and Ünver (2015) can achieve are constrained ordinal efficiency, which are
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necessarily dominated by ordinal efficient outcomes.22

We also note a special case in which agents’ preferences and objects’ priorities are both strict.

In this case, it must be that k = I and that there is exactly one agent in each priority group of any

object. Noting that any DA assignment when agents report true ordinal preferences is stable, we

have the following result as a corollary of Theorem 4:

Corollary 2 If both agents and objects rank those on the other side strictly, any DA assignment

when agents report true ordinal preferences is a PM assignment.

6.3 Comparison with the Boston Mechanism

The PM mechanism is closely related to another commonly used mechanism, the Boston mechanism

(BM), whose definition is available in Appendix A. It has been noted in the literature that BM

elicits signals of agents’ cardinal preferences, and indeed sometimes BM can yield PM assignments

in Baysian Nash equilibrium.

Proposition 2 A PM assignment is also a Bayesian Nash equilibrium assignment of BM, if every

agent has strict preferences and consumes a bundle that either includes only free objects (according

to her own prices), or includes one object with a positive price in (1,+∞) (according to her own

price) and all others free to all agents.

Note that the above result is a sufficient condition, and the following example shows there are

other cases where PM and BM coincide.

Example 3 In the same setting as in Example 1, one can verify that the following strategies

constitute a Nash equilibrium under BM (with single tie-breaking), and the equilibrium outcome is

exactly the PM assignment.

BM Equilibrium Strategies

Agent Rank-Order List

i1 s1 s4 . . . . . .

i2 s2 . . . . . . . . .

i3 s3 . . . . . . . . .

i4 s1 s4 . . . . . .

”. . .” indicates an arbitrary school.

BM Equilibrium Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/2 0 0 1/2 1/2

i2 0 1 0 0 1− ε

i3 0 0 1 0 1− ε

i4 1/2 0 0 1/2 1/2

22In recent work, Che and Tercieux (2014) provide modifications of DA to improve asymptotic efficiency.
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When agents do not have strict preferences, or at least one of them spends her budget on more

than one object with positive and finite prices, in general, a PM assignment is not an equilibrium

outcome of BM. More importantly, in addition to BM’s disadvantages discussed in the literature

review, not every equilibrium outcome of BM is a PM outcome. The following example show this

clearly.

Example 4 Let us consider the following economy with three agents (i1, ..., i3) and three objects

(s1, ..., s3) with one copy of each available. Moreover, there are no priorities. The unique PM

equilibrium is as follows:

Cardinal Preferences

Objects

Agent s1 s2 s3

i1 1 0.9 0

i2 1 0.6 0

i3 1 0.1 0

PM Prices

Objects

Agent s1 s2 s3

i1 15/8 9/8 0

i2 15/8 9/8 0

i3 15/8 9/8 0

PM Assignment

Objects

Agent s1 s2 s3

i1 0 8/9 1/9

i2 7/15 1/9 19/45

i3 8/15 0 7/15

Note that in the PM equilibrium, i2 spends a positive amount on both s1 and s2. Moreover, the BM

Bayesian Nash equilibrium, which is unique in terms of outcomes, is that i1 top ranks s2, while i2

and i3 top ranking s1, leading to an assignment different from the PM assignment:

BM Equilibrium Strategies

Agent Rank-Order List

i1 s2 . . . . . .

i2 s1 s3 . . .

i3 s1 s3 . . .

”. . .” indicates an arbitrary school.

BM Assignment

Objects

Agent s1 s2 s3

i1 0 1 0

i2 1/2 0 1/2

i3 1/2 0 1/2

6.4 “Welfare” of Both Sides

Usually, it is natural to care only about the welfare of agents, as objects’ priority ranking over

agents do not necessarily reflect any underlying preferences of their suppliers. However, there

are exceptions, and needless to say, priorities are usually not randomly chosen. For example, in

school choice, priority rules may reflect preferences of the local constituency such as minimizing
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transportation costs (distance-based priorities) and/or encouraging investment in studying (test-

score-based priorities).

When one is interested in taking the welfare of both sides into account, PM is two-sided Pareto

efficient in terms of both the preferences of agents and those defined by priorities. In this context,

we say that a random assignment Π′ ∈ A is ex ante two-side dominated by another random

assignment Π ∈ A if

∑
s∈S

πi,svi,s ≥
∑
s∈S

π′i,svi,s, ∀i ∈ I,∑
i∈{ks,i≤k}

πi,s ≥
∑

i∈{ks,i≤k}

π′i,s, ∀s ∈ S, ∀k ∈ K,

and at least one inequality is strict. That is, every agent has a weakly higher expected utility in

Π, and, for each object s, the assignment Π first-order stochastically dominates Π′ with respect to

the priority structure. A random assignment is ex ante two-sided efficient if it is not ex ante

two-side dominated by any other random assignment. We then obtain:

Theorem 5 Every PM assignment is ex ante two-sided efficient.

Remark 6 If the problem is indeed two-sided, i.e., objects’ priorities represent some underlying

possibly-weak preferences, our results then make PM a promising candidate for two-sided matching

with weak preferences.

7 Concluding Remarks

This paper studies the allocation of indivisible goods that honors priorities when monetary transfers

are not possible and agents have unit demand. We propose a pseudo-market mechanism, PM, in

which agents are endowed with budgets of token money and purchase bundles of probability shares

in objects to maximize their expected utility. The prices in the mechanism are calculated from

agents’ reported cardinal preferences and are priority-specific. More specifically, everyone in any

given priority group of an object faces the same price, while those who are in higher priority groups

of an object face a lower, sometimes zero, price of that object.

We show that the mechanism has desirable properties. After establishing the existence of

PM equilibrium prices, we prove that it is asymptotically incentive compatible for agents in a

sequence of replica economies. Moreover, the mechanism delivers a random assignment that honors
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priorities, i.e., satisfies ex ante stability or eliminates ex ante justified envy. The structure of the

price system also guarantees that everyone in the same priority group of an object has an equal

claim to that object, when budgets are equal. The mechanism can achieve all assignments that are

not dominated by other assignments satisfying the above criteria. Because of the explicit use of

cardinal preferences, PM has an efficiency advantage over other popular mechanisms.23

These properties of the mechanism make it a promising candidate for real-life applications

to settings such as school choice. Schools often prioritize student applications, and the priority

structure is usually determined by the school district or local laws. In most cases, a school’s

priority ranking over students is not strict, which makes the PM mechanism a natural candidate to

run seat assignment. The mechanism guarantees that the random assignment honors priorities and

thus that it can be implemented as a lottery over deterministic assignments that honor priorities.

Furthermore, as Abdulkadiroglu, Che, and Yasuda (2011) point out, in settings such as school

choice, students may have similar ordinal preferences. Therefore, without information on cardinal

preferences, the efficiency that a mechanism can achieve may be limited.24 Indeed, using data from

the high school match in NYC, Abdulkadiroglu, Agarwal, and Pathak (2015) show the significant

welfare-improving potential of eliciting cardinal utilities. By explicitly using students’ cardinal

preferences, the PM mechanism allows school districts to achieve such efficiency gains.25

23A concern in using pseudo-market-like mechanisms is the potential difficulty of eliciting cardinal pref-
erences from agents (see e.g. Bogomolnaia and Moulin (2001)). The experimental evidence in Budish and
Kessler (2014) suggests that pseudo-market mechanisms perform well despite this difficulty. Furthermore,
Chen and He (2015) show that the need to report cardinal preferences is an incentive for agents to investigate
whether an object is a good fit for them, and that such an investigation can be welfare-improving.

24Whereas ordinal inefficiency may vanish in large markets (Che and Kojima 2010), the cardinal inefficiency
of ordinal mechanisms persists (Pycia 2014).

25Note that one can accommodate group-specific quotas within the PM similarly to how they might be
accommodated within the Deferred-Acceptance mechanism (see e.g., Abdulkadiroglu and Sonmez (2003)):
to accommodate such quotas, one can divide each school into multiple sub-schools each of which has a quota
equal to the one for the corresponding group and gives that group the highest priority.
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Appendices

A Alternative Mechanisms

This appendix gives the definitions of three mechanisms: the Probabilistic Serial, the Boston
mechanism (also known as the immediate-acceptance mechanism), and the Gale-Shapley deferred-
acceptance mechanism.

The Probabilistic Serial is defined by the following symmetric simultaneous eating algorithm.
It is proposed for one-sided matching where objects do not rank agents. Each object s is considered
as an infinitely divisible good with supply qs that agents eat in the time interval [0, 1].

Round 1. Each agent eats away from her favorite object at the same unit speed, and the
algorithm proceeds to the next step when an object is completely exhausted.

Generally, in:
Round k (k>1). Each agent eats away from her most-preferred object among the remaining ones

at the same unit speed, and the algorithm proceeds to the next step when an object is completely
exhausted.

The process terminates after any round k when every agent has eaten exactly one total unit of
objects (i.e., at time 1). The random assignment of an agent i is then given by the amount of each
object she has eaten during the run of the algorithm.

The Boston mechanism solicits rank-ordered lists of objects from agents, uses pre-defined
rules, including tie-breaking rules, to determine objects’ strict ranking over agents, and has multiple
rounds:

Round 1. Each object considers all the agents who rank it first and assigns its copies in order
of their priority at that object until either there are no copies of the object left or no such agents
left.

Generally, in:
Round (k>1). The k-th choice of the agents who have not yet been assigned is considered.

Each object that still has available copies assigns the remaining copies to agents who rank it as kth
choice in order of their priority at that object until either there are no copies of that object left or
no such agent left.

The process terminates after any round k when every agent is assigned a copy of some object,
or if the only agents who remain unassigned listed no more than k choices.

The Gale-Shapley Deferred-Acceptance mechanism (DA) can be agent-proposing or
object-proposing. In the former, the mechanism collects objects’ supplies and their priority struc-
ture over agents, as well as agents’ submitted rank-ordered lists of objects. When necessary, tie-
breaking rules are applied to form strict rankings of objects over agents. The process then has
several rounds:

Round 1. Every agent applies to her first choice. Each object rejects the least preferred agents
in excess of its supply and temporarily holds the others.

Generally, in:
Round (k>1). Every agent who is rejected in Round (k − 1) applies to the next choice on her

list. Each object pools new applicants and those who are held from Round (k − 1) together and
rejects the least preferred agents in excess of its supply. Those who are not rejected are temporarily
held by the objects.
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The process terminates after any Round k when no rejections are issued. Each object is then
matched with agents it is currently holding. The object-proposing DA is similarly defined.

B Proofs

B.1 Proof of Theorem 1

First, we transform the price space from [0,+∞]S×k to Z ≡ [0, π/2]S×k such that ∀P ∈ [0,+∞]S×k,
there is a Z ∈ Z and Z = [zs,k]s∈S,k∈K = [arctan (ps,k)]s∈S,k∈K, with arctan (+∞) ≡ π/2 and

tan (π/2) ≡ +∞.26 Since the arctangent function, arctan, is a positive monotonic transformation,

the reverse statement is also true such that ∀Z ∈ Z, there is a P ∈ [0,+∞]S×k and P = T AN (Z) ≡
[tan (zs,k)]s∈S,k∈K.

A price-adjustment process for Γ is defined as,

H [Z,G (T AN (Z) , u)]

≡

{
Y = [ys,k]s∈S,k∈K

∣∣∣∣∣ ys,k
(
[ds,k]k∈K

)
= min

{
π
2 ,max

[
0, zs,k +

(∑k
κ=1 ds,κ −

qs
I

)]}
∀ [ds,k]s∈S,k∈K ∈ G (T AN (Z) , u)

}
.

where u = (u1, · · · , uI) are agents’ reports, and G (T AN (Z) , u) is the per capita demand corre-
spondence for each priority group of each object.

Since G is the average of individual demand correspondences, it is then upper hemicontin-
uous and convex-valued, and thus H [Z,G] has the same properties. H [Z,G] satisfies all the
conditions of Kakutani’s fixed-point theorem, and there must exist a fixed point Z∗ such that
Z∗ ∈ H [Z∗, G (T AN (Z∗) , u)].

Given Z∗, there also exists [ds,k]s∈S,k∈K ∈ G such that ∀s and ∀k,

z∗s,k = min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
.

This implies that ∀s,
∑k

κ=1 ds,κ = qs/I and there exists k∗ (s) for each s such that
∑k∗(s)

κ=1 ds,κ = qs
I ,

z∗s,k∗(s) ∈
[
0, π2

)
, and ds,k∗(s) > 0; if k < k∗ (s),

∑k
κ=1 ds,κ < qs/I and z∗s,k = 0; and if k > k∗ (s),

ds,k = 0, and z∗s,k ∈ [0, π/2].
Moreover, if ds,k = 0, and z∗s,k ∈ [0, π/2) for some k > k∗ (s), there must exist another Z∗∗

such that Z∗∗ ∈ H [Z∗∗, G (T AN (Z∗∗) , u)] and that if k ≤ k∗ (s), z∗∗s,k = z∗s,k; and if k > k∗ (s),
z∗∗s,k = π/2.

In summary, P ∗∗ = T AN (Z∗∗) satisfies the structure of PM prices and indeed clears the
market. Therefore, an equilibrium price matrix in PM exists.

B.2 Proof of Theorem 2

Let us represent each economy by a probability measure. Let T = [0, 1]S × KS be the compact
space of utility-priority profiles endowed with the standard Euclidean distance. For any profile

26We could alternatively work in the original space [0,+∞]S×k. Here and in the following, with some abuse
of notation, π, without subscript, is the mathematical constant, i.e., the ratio of a circle’s circumference to
its diameter.
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(v, k) ∈ T and scalar ε > 0, let Bε (v, k) be the ball of profiles within distance ε of (v, k). LetM be
the space of compact-support Borel probability measures on T . An economy can be conveniently
represented by a probability measure µ on T , where µ (v, k) is the proportion of agents with utility-
priority profile (v, k) in the economy. Therefore, each of the sequence of replica economies can be
represented by the same measure. We extend our use of the Prohorov metric ρ to measure the
distance between measures on T ,

ρ (µ, ν) = inf {ε > 0|ν (E) ≤ µ (Bε (E)) + ε and µ (E) ≤ ν (Bε (E)) + ε, ∀E ⊂ T} .

Notice that the entire set of regular economies can be partitioned into open and disjoint subsets
such that for every subset B there is a finite number m > 0 of continuous functions ψ1, ..., ψm from

B to [0,+∞]S×k̄ such that the set of transformed PM price matrices Ψ (µ) = {ψ1 (µ) , ..., ψm (µ)}
for every µ ∈ B. Indeed, consider an open ball of regular economies around each regular economy.
Non-disjoint balls must have the same set of price functions. Taking a union of open sets with the
same set of price functions gives us an open set with these price functions that is disjoint from
regular economies with other price sets.

Let us set ψ(n) (µ) = ψ (µ) = ψ1 (µ) for regular economies, and set both ψ(n) (µ) and ψ (µ) to
be an arbitrary price vector otherwise. By construction, this price function is continuous at every
regular economy.

Take the n-replica regular economy Γ(n) that is represented by µ(n)(=µ). Suppose agent i

submits a report u instead of vi, and the resulting measure on utility profiles is µ
(n)
u . By definition

of the Prohorov metric, µ
(n)
u is close to µ(n) in which everyone is truth-telling. For large enough n

we have that µ
(n)
u is in the same price-function-ball as µ(n) = µ. Since ψ(n) is continuous on each

price-function ball, agent i can affect prices by only a small amount: given every ε > 0, for every
n sufficiently large and for all ui,∣∣∣arctan

(
ψ(n)

(
ui, V

(n)
−i

))
− arctan

(
ψ(n)

(
vi, V

(n)
−i

))∣∣∣ < ε.

We therefore specify a price selection rule for PM; since agents’ utilities are continuous in prices,
Theorem 2 follows.

For completeness, we provide below a detailed analysis of the latter statement, including a
useful technical lemma.

Let P(n)
ui denote the set of PM equilibrium prices when one copy of i reports ui while all others

reporting truthfully (V
(n)
−i ) in Γ(n). Therefore, P(n)

vi is the set of equilibrium prices when everyone

in Γ(n) is truth-telling, and ∪ui∈[0,1]SP
(n)
ui is the set of prices that i can obtain through unilateral

manipulation of her reports. Furthermore, ∪ui∈[0,1]SP
(1)
ui is the set of obtainable prices associated

with the base economy Γ. Similar to the lemma in Roberts and Postlewaite (1976), we have the
following:

Lemma B1 Given the sequence of replica economies,
{

Γ(n)
}
n∈N, and a agent i,

(i) ∪ui∈[0,1]SP
(n)
ui is closed for all n.

(ii) The sets of prices that i can obtain by unilateral manipulation in
{

Γ(n)
}
n∈N have a nesting

structure: ∪ui∈[0,1]SP
(n)
ui ⊆ ∪ui∈[0,1]SP

(n′)
ui for all n > n′.

(iii) If P /∈ P(1)
vi , there exists n∗ such that n > n∗ implies P /∈ P(n)

ui , and thus P(1)
vi =

∩n∈N
(
∪ui∈[0,1]SP

(n)
ui

)
.
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Proof of Lemma B1. We prove the lemma step by step.

(i) ∪ui∈[0,1]SP
(n)
ui is closed.

Consider a sequence of price matrices P (m) → P̄ , where P (m) ∈ ∪ui∈[0,1]SP
(n)
ui . That is, for

each m, there is a sequence of u
(m)
i such that P (m) ∈ P(n)

u
(m)
i

. Since u
(m)
i is bounded, there must

exist a convergent subsequence, which is also denoted as u
(m)
i → ūi. Besides, the corresponding

subsequence of price matrices, still denoted as P (m), converges to P̄ . This implies:

π(m)
(
u

(m)
i , P (m)

)
+ (n− 1)π(m)

(
vi, P

(m)
)

+ n
∑
j 6=i

π(m)
(
vj , P

(m)
)

= nQ,

where π(m)
(
ui, P

(m)
)

denotes an element in the set π
(
ui, P

(m)
)
. Due to their boundedness, there

is a subsequence of
{
π(m)

(
u

(m)
i , P (m)

)
, π(m)

(
vi, P

(m)
)}

that converges to {π̄ui , π̄vi}.
The maximum theorem implies that π (ui, P ) is upper hemicontinuous in (ui, P ), and therefore

π̄ui ∈ π
(
ūi, P̄

)
, π̄vi ∈ π

(
vi, P̄

)
, and π̄vj ∈ π

(
vj , P̄

)
. The equality above leads to:

π̄ui + (n− 1) π̄vi + n
∑
j 6=i

π(m)π̄vj = nQ,

which proves that P̄ ∈ ∪ui∈[0,1]SP
(n)
ui and hence that ∪ui∈[0,1]SP

(n)
ui is closed.

(ii) The nesting structure of ∪ui∈[0,1]SP
(n)
ui .

To simplify notations, in the following, let us assume that the demand correspondence π (ui, P )
is single-valued for all i, all ui, and all P . The proof can easily be extended to allow π (ui, P ) to
be set-valued.

P ∈ ∪ui∈[0,1]SP
(n)
ui means that there exists u

(n)
i such that P clears the market given reports(

u
(n)
i , vi

)
:

π
(
u

(n)
i , P

)
+ (n− 1)π (vi, P ) + n

∑
j 6=i

π (vj , P ) = nQ.

To have P as an equilibrium price in Γ(n′), there has to exist some u
(n′)
i ∈ [0, 1]S such that:

π
(
u

(n′)
i , P

)
+
(
n′ − 1

)
π (vi, P ) + n′

∑
j 6=i

π (vj , P ) = n′Q.

Differencing the two equations and rearranging the terms lead to:

π
(
u

(n′)
i , P

)
=
n′

n
π
(
u

(n)
i , P

)
+
n− n′

n
π (vi, P ) .

Since π
(
u

(n)
i , P

)
and π (vi, P ) are affordable to i, the convex combination of the two must be

affordable to i. Therefore, there must exist some u
(n′)
i such that the above equation is satisfied.

(iii) P(1)
vi = ∩n∈N

(
∪ui∈[0,1]SP

(n)
ui

)
It is straightforward to verify that P(1)

vi ⊆ P
(n)
vi ⊆ ∪ui∈[0,1]SP

(n)
ui for all n. We then show that

for any P /∈ P(1)
vi , there exists n∗ such that n > n∗ implies P /∈ P(n)

ui .

Suppose that P /∈ P(1)
vi but the statement in the lemma is false. The nesting structure implies
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that P ∈ ∪ui∈[0,1]SP
(n)
ui , for all n. Therefore, there exists a sequence of reports by the given copy

of agent i,
{
u

(n)
i

}
n∈N

, such that the market clears at P :

π
(
u

(n)
i , P

)
+ (n− 1)π (vi, P ) + n

∑
j 6=i

π (vj , P ) = nQ.

Rearranging the above equation yields:

π
(
u

(n)
i , P

)
− π (vi, P ) = n

Q−∑
j∈I

π (vj , P )

 ,

where the left-hand-side term is bounded due to the unit demand constraint. Moreover, P /∈ P(1)
vi

implies Q−
∑

j∈I π (vj , P ) 6= 0, which means the right-hand-side of the equation diverges when n
increases. Therefore, there must exist n̄ such that the above equation cannot be satisfied for n > n̄.
This contradiction proves the lemma.

We are now ready to finish the proof of our main incentive compatibility theorem.
Proof of Theorem 2. Suppose that for a copy of agent type i, also denoted as i, there exists a
subsequence of replica economies

{
Γ(nm)

}
nm∈N where she gains at least ε by unilateral misreporting.

Let P (m) = ψ(nm)
(
u

(nm)
i , V

(nm)
−i ;K(n)

)
where P (m) is the price matrix with which PM implements

the assignment in economy Γ(nm) after i’s unilateral manipulation. Since
{

arctan
(
P (m)

)}
nm∈N

is bounded, there is a subsequence (also denoted as
{

arctan
(
P (m)

)}
nm∈N) converging to some

arctan
(
P̄
)
. Because ∪ui∈[0,1]SP

(nm)

u
(nm)
i

and thus arctan

(
∪ui∈[0,1]SP

(nm)

u
(nm)
i

)
are closed (Lemma B1),

we have:

arctan
(
P̄
)
∈ arctan

(
∩n∈N

(
∪ui∈[0,1]SP

(nm)

u
(nm)
i

))
= arctan

(
P(1)
vi

)
,

which, together with the continuity of ψ(nm) (= ψ) as shown at the beginning of this subsection,
further implies P̄ = ψ (V,K). In other words, P̄ is the PM equilibrium price matrix in Γ selected
by ψ when everyone is truth-telling.

We define the indirect utility function Wui (P ) as the expected utility (with respect to true
preferences vi) that i can obtain when reporting ui given price P . By the maximum theorem,
i’s utility maximization problem implies that Wui (P ) is continuous in P . Moreover, the utility
from manipulation, Wui

(
P (m)

)
, is always bounded above by Wvi

(
P (m)

)
, and Wvi

(
P (m)

)
goes to

Wvi

(
P̄
)

when m goes to infinite. Therefore, the (sub)sequence of Wui

(
P (m)

)
is bounded above by

the utility from truth-telling:

lim sup
m→∞

Wui

(
P (m)

)
≤ lim sup

m→∞
Wvi

(
P (m)

)
= Wvi

(
P̄
)

.

This contradiction proves that the statement in the theorem is true for a given copy of i.
To prove the statement holds true for each copy of each agent type, we note that there is a finite

number of agent types in Γ(n). There thus must exist n∗ such that n > n∗ implies that the utility
gain from unilateral misreporting for any agent is uniformly bounded by ε given that everyone else
is truth-telling.
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B.3 Other Proofs

Proof of Proposition 1. Given an ex ante stable assignment Π, ∀s ∈ S, all the priority groups
belong to one of the three categories:

(a) cut-off group, i.e., k∗ (s) such that
∑

j∈I, ks,j<k∗(s)

πj,s < qs,
∑

j∈I, ks,j≤k∗(s)

πj,s = qs, and∑
j∈I, ks,j>k∗(s)

πj,s = 0;

(b) groups that have higher priority than k∗ (s) at s in Π, i.e., a set Ks ⊂ K such that k ∈ Ks
iff k < k∗ (s);

(c) groups that have lower priority than k∗ (s) at s in Π, i.e., a set Ks ⊂ K such that k ∈Ks iff
k > k∗ (s).

Note that k∗ (s) always exists and is unique for all s and for any given Π, while Ks or Ks may
be empty. As long as there are at least two priority groups, Ks = ∅ implies Ks 6= ∅, and vice
versa.

(i) We first show that every Π in ΠStable
Γ is ex ante stable.

If P ∈ PStableΓ , then

pi,s =


0
∈ [0,+∞]
+∞

if ks,i ∈ Ks
if ks,i = k∗ (s)
if ks,i ∈ Ks

Fix Π ∈ ΠΓ (P ) for some P ∈ PStableΓ . ∀i, j ∈ I, ∀s, s′ ∈ S such that vi,s > vi,s′ and ks,i < ks,j , if
πj,s > 0, we must have πi,s′ = 0 since pi,s = 0 according to the definition of PStableΓ . Equivalently,
πi,s′ > 0 is not optimal for i facing (pi,1, · · · , pi,S), which proves every Π in ΠStable

Γ is ex ante stable.

Proof of Theorem 3. By Proposition 1 as well as Corollary 1, PM assignments are ex ante stable.
Moreover, by the definition of equal claim among ex ante stable assignment, PM assignments also
satisfy equal claim.

For any given assignment that satisfies ex ante stability and equal claim, Proposition 1 and the
definition of equal claim imply that the assignment can be rationalized by prices that satisfy the
PM construction. Therefore, the assignment is also an equilibrium outcome of PM.

Proof of Theorem 4. Given a stable matching, for each object s, we may find k∗ (s) =
maxi∈{j∈S|j is matched with s} {ks,i}, which is the lowest priority group of s among those who are
matched with s. We may then define the following price system:

ps,ks,i =

{
0, if ks,i ≤ k∗ (s)

+∞, if ks,i > k∗ (s)
, ∀s.

This price system satisfies the requirement of the PM mechanism. We need to show that agents
maximize their expected utility given the prices.

The only possible deviation for an agent i is to choose some object s which is free to her. That
is, she is in a higher priority group of s than someone who is already accepted by s. If this deviation
is profitable to i, (i, s) forms a blocking pair (or i has justified envy at s). By the definition of
stability, there is no such pair. This proves that every stable matching is an equilibrium assignment
of the PM mechanism.

Similarly, for any PM assignment, there exists a corresponding price matrix that guarantees
that prices are either zero or infinite, which implies that the assignment is deterministic. For
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deterministic assignments, ex ante stability is equivalent to stability, and Theorem 3 implies that
PM assignments in this case are stable.

Proof of Proposition 2. Let P ∗ be an equilibrium price matrix of PM.
Suppose that si,1 is the non-free object (according to her own price) on which agent i spends

her budget, and that si,2 is her most preferred object among all free ones. By assumption, 1 <
p∗si,1,ksi,1,i

< +∞. Since each agent has strict preferences over objects, si,2 is unique and vi,si,1 >

vi,si,2 . By assumption, if i’s consumption includes a positive probability share of si,2, si,2 must be

free to everyone. i’s random assignment
{
π∗i,s

}
s∈S

must be such that:

π∗i,si,1 = 1/p∗si,1,ksi,1,i
, π∗i,si,2 = 1− π∗i,si,1 , and π∗i,s = 0, ∀s 6= si,1, 6= si,2;

Alternatively, if i does not spend any budget on any non-free objects,

π∗i,s′i,2
= 1, and π∗i,s = 0 ∀s 6= s′i,2.

Note that such s′i,2 may or may not be free to every agent.
Consider that agent i’s submitted rank-order list in BM is L∗i = (si,1, si,2) if i spends some of

her budget or L∗i =
(
s′i,2

)
if she does not spend any budget at all. It can be verified that given these

rank-order lists, BM clears the market in two rounds and delivers the same random assignment as
the PM mechanism. The only thing left to check is that this is a Nash equilibrium.

(i) If L∗i =
(
s′i,2

)
, suppose there exists s′ s.t. vi,s′ > vi,s′i,2 . If not, there is no profitable

deviation for i, as she is matched with her most preferred object already. If i ranks s′ above s′i,2,
she cannot be matched with s′, because all those top ranking s′ must be in a higher priority group
of s′. Otherwise, s′ would cost i a finite amount, which would allow her to purchase some shares
in s′ under the PM mechanism. Certainly, ranking s′ below s′i,2 does not change the assignment.
Similarly, i cannot benefit by ranking objects less preferable than s′i,2 in her list.

(ii) Now suppose L∗i = (si,1, si,2) and L′i is a profitable deviation for i. Given the assumptions,
we have the following results:

(a) Object si,1 is not available after the first round of BM;
(b) i may obtain a positive share of s′ by ranking it first if in PM ps′,ks′,i < +∞ (i.e., i’s priority

at object s′ is at least as high as the cut-off group).
(c) Only objects available in the second round and rounds later are those ranked as second

choice by some agents. In other words, they are those who have zero prices for everyone in the PM
mechanism.

Therefore, if L′i still has si,1 as her first choice, it cannot be profitable, because she can get
1/p∗si,1,ksi,1,i

of si,1 and at best 1− 1/p∗si,1,ksi,1,i
shares of si,2.

If L′i has s′ (s′ 6= si,1) as her first choice, to be profitable, vi,s′ > vi,si,2 and s′ cannot be of zero
price or infinite price to i in PM. If s′ is of zero price to i, i could have obtained s′ instead of si,2 in
PM; if s′ is of infinite price to i, i could never obtain any shares of s′. i thus must be in the cut-off
priority group of s′. Given L∗−i and the rules of BM, by ranking s′ as first choice, i can obtain:

π′i,s′ =
qs′ −

∑
j∈{j∈I:ks′,j<ks′,i} π

∗
j,s′

p∗s′,ks′,i

(
qs′ −

∑
j∈{j∈I:ks′,j<ks′,i} π

∗
j,s′

)
+ 1

,
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where qs′−
∑

j∈{j∈I:ks′,j<ks′,i} π
∗
j,s′ is the remaining quota at s′ after those who are in higher priority

groups claim their shares; and p∗s′,ks′,i

(
qs′ −

∑
j∈{j∈I:ks′,j<ks′,i} π

∗
j,s′

)
is the total expenditure on

s′ by agents who are in the same priority group of s′ as i; and more importantly it is the total
number of such agents other than i who have ranked s′ as first choice given L∗−i. This is because
everyone spends her budget on at most one object and p∗s′,ks′,i

> 1 by assumption. This lead to

p∗s′,ks′,i
π′i,s′ < 1, which implies that π′i,s′ is affordable to i in PM.

Moreover, given L∗−i and any L′i, besides the first-choice object (s′), i can only obtain some
shares in objects that are free to everyone in the PM. Therefore, the assignment resulting from a
potentially deviation is still affordable to i in PM, which implies that it cannot be profitable.

This complete the proof that
(
L∗i , L

∗
−i
)

is a Bayesian Nash equilibrium in BM.

(ii) We show that if Π ∈ A is ex ante stable, then ∃P ∗ ∈ PStableΓ such that Π ∈ ΠΓ (P ∗).

It suffices to show that ∀i ∈ I, [πi,s]s∈S is the optimal choice facing
[
p∗i,s

]
s∈S

and
[
p∗i,s

]
s∈S

is in

PStableΓ .
Given Π, we can still define three sets of priorities, Ks, {k∗ (s)}, and Ks. Across agents, the

only restriction on prices in PStableΓ is that prices for agents with priorities in Ks∪Ks and not in
cut-off groups must be the same (either zero or infinite). An immediate finding is that ∀ks,i ∈Ks,
we can set p∗i,s = +∞ since πi,s = 0 for all such i and s, which satisfies the property of PStableΓ .

Given Π, we can further group the objects into three distinct sets for agent i, S =Si ∪ Sci ∪ Si:

Si = {s ∈ S|ks,i ∈ Ks} ;Sci = {s ∈ S|ks,i = k∗ (s)} ;Si =
{
s ∈ S|ks,i ∈ Ks

}
.

Also note that ∀i ∈ I, S\Si 6= ∅, and we consider the following possibilities:
(a) Sci = ∅: The ex ante stability implies that i is matched with her most-preferred object

within S\Si = Si with probability 1, thus p∗i,s = 0 ∀s ∈ S\Si = Si supports this assignment as a

utility-maximization outcome and satisfies the properties of PStableΓ .
(b) Si = ∅: This implies that S\Si = Sci . By adjusting the prices of objects in Sci , one can

make [πi,s]s∈S an optimal choice of i. This is feasible because there are no restrictions on prices of
objects in Sci .

(c) Sci 6= ∅ and Si 6= ∅: We denote the most-preferred object within Si for i as si, then the ex
ante stability implies that ∀s ∈ S\Si, πi,s = 0 if vi,si > vi,s. Let us set p∗i,s = 0 for ∀s ∈ Si, which

satisfies the properties of PStableΓ .
Denote Sci (si) ≡ {s ∈ Sci |vi,s ≥ vi,si }. If πi,si = 0, i must only consume objects in Sci (si).

Given zero prices for all objects in Si and infinite prices for objects in Si, one can find a vector of
personalized prices for all objects in Sci (si) to make [πi,s]s∈S i’s optimal choice. Note that this can
be done independently for all agents. If instead πi,si > 0, it implies that i only consumes objects in
{si} ∪ Sci . Similarly, one can find a price vector for objects in Sci (si) to make [πi,s]s∈S i’s optimal
choice.

This proves that there always exists a price matrix P ∗ ∈ PStableΓ such that each
[
p∗i,s

]
s∈S

supports [πi,s]s∈S if Π is ex ante stable.

Proof of Theorem 5. We define the following rules regarding infinity:

0 ∗+∞ = 0; +∞ ≥ +∞.

Suppose a PM random assignment,
[
π∗i,s

]
i∈I,s∈S

, is ex ante Pareto dominated by another ran-
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dom assignment [πi,s]i∈I,s∈S , i.e.,∑
s∈S

πi,svi,s ≥
∑
s∈S

π∗i,svi,s, ∀i ∈ I, (1)∑
i∈{ks,i≤k}

πi,s ≥
∑

i∈{ks,i≤k}

π∗i,s, ∀s ∈ S, ∀k ∈ K, (2)

and at least one inequality is strict.
For any agent whose most preferred object is free or has the associated price no more than

one, she obtains that object for sure, and there is no other assignment that makes her better
off. If for agent i,

∑
s∈S πi,svi,s >

∑
s∈S π

∗
i,svi,s, it must be such that

∑
s∈S ps,ks,iπi,s > 1 and∑

s∈S π
∗
i,sps,ks,i = 1. Otherwise

[
π∗i,s

]
s∈S

would not be optimal for i.

Moreover, for agents other than i who do not obtain their most preferred objects, it must be

that
∑

s∈S ps,ks,jπj,s ≥
∑

s∈S ps,kj,sπ
∗
j,s, since

[
π∗j,s

]
s∈S

is the cheapest among bundles delivering

the same expected utility. Therefore,∑
s∈S

ps,ks,iπi,s +
∑
j 6=i

∑
s∈S

ps,ks,jπj,s >
∑
s∈S

ps,ks,iπ
∗
i,s +

∑
j 6=i

∑
s∈S

ps,ks,jπ
∗
j,s.

However, because prices are higher for agents in lower priority groups, equation (2) implies that:∑
j∈I

∑
s∈S

ps,ks,jπj,s ≤
∑
j∈I

∑
s∈S

ps,ks,jπ
∗
j,s,

which leads to a contradiction.
Suppose instead that for object s, equation (2) is satisfied for all k, and ∃k ∈

{
1, ..., k − 1

}
,

such that ∑
i∈{ks,i≤k}

πi,s >
∑

i∈{ks,i≤k}

π∗i,s.

This implies, ∑
j∈I

ps,ks,jπj,s <
∑
j∈I

ps,ks,jπ
∗
j,s,

again because prices are higher for agents in lower priority group. Aggregating over all objects,∑
j∈I

∑
s∈S

ps,ks,jπj,s <
∑
j∈I

∑
s∈S

ps,ks,jπ
∗
j,s.

However, based on the same arguments as above, equation (1) implies that
∑

s∈S ps,ks,jπj,s ≥∑
s∈S ps,ks,jπ

∗
j,s, ∀j ∈ I, and thus,∑

j∈I

∑
s∈S

ps,ks,jπj,s ≥
∑
j∈I

∑
s∈S

ps,ks,jπ
∗
j,s.

This leads to another contradiction.
Therefore,

[
π∗i,s

]
i∈I,s∈S

, must be two-sided ex ante efficient.
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C Limiting Individual Incentive Compatibility of PM

This appendix proves that PM satisfies the concept of limiting individual incentive compatibility
as in Roberts and Postlewaite (1976).

Definition C1 Let
{

Γ(n)
}
n∈N be a sequence of economies and let i be an agent in each Γ(n). A

mechanism is limiting individually incentive compatible for i in
{

Γ(n)
}
n∈N if for any ε there exists

n∗ such that n > n∗ implies that for each πi attainable by i in Γ(n) there exists a competitive
assignment π∗i to i in Γ(n) (everyone is truth-telling) such that

∑
s∈S π

∗
i,svi,s >

∑
s∈S πi,svi,s − ε.

Therefore, this concept focuses on the incentive for an individual agent to misreport while
everyone else is truth-telling. In particular, it does not require a price selection rule, because only
the existence of such a truth-telling equilibrium is required. The following shows that PM satisfies
this property in a sequence of economies.

C.1 Sequence of Economies

We first define per capita demand functions and take into account that agents in different priority
groups face different prices, and thus the per capita demand is priority-specific. Let Fi (P ) be the
augmented set of feasible consumption bundles for agent i,

Fi (P ) ≡


{
πi = [πi,s]s∈S

∣∣∣∣ πi,s ≥ 0, ∀s,
∑

s∈S πi,s = 1,
and

∑
s∈S πi,sps,ks,i ≤ 1

}
, if ps,ks,i ≤ 1 for some s;{

πi = [πi,s]s∈S

∣∣∣∣∣ πi,s ≥ 0, ∀s,
∑

s∈S πi,s = 1

mint=1,...,S

{
pt,kt,i

} ,

and
∑

s∈S πi,sps,ks,i ≤ 1

}
, if ps,ks,i > 1, ∀s.

When there are no affordable bundles such that
∑

s∈S πi,s = 1, the second part of the definition
assumes that every agent is allowed to spend all their money on the cheapest objects. Fi (P ) is
then non-empty, closed, and bounded.27

Let Ui =
∑

s∈S πi,svi,s be i’s expected utility function. Define Gi (P, vi) as the set of bundles
that i would choose from Fi (P ) to maximize Ui. Formally,

Gi (P, vi) =

{
πi ∈ Fi (P )

∣∣∣∣ ∀π′i ∈ Fi (P ) , Ui (πi) > Ui (π′i) ,
or Ui (πi) ≥ Ui (π′i) and

∑
s∈S πi,sps ≤

∑
s∈S π

′
i,sps

}
.

Since Gi (P, vi) is obtained from the closed, bounded, and non-empty set Fi (P ) by maximizing
(and minimizing) continuous functions, Gi (P, vi) must be non-empty. Gi (P, vi) is a convex set,
because Ui (πi) and

∑
s∈S πi,sps,ks,i are linear functions of πi. Define G (P, v) as the set of per

capita demand for each priority group for each object that can emerge when prices equal P and
each agent i chooses a vector in Gi (P, vi), that is, ∀P ∈ P:

G (P, V ) =

{
D = [ds,k]s∈S,k∈K

∣∣∣∣ ds,k = 1
|I|
∑
{i∈I|ks,i=k} πi,s, ∀s,∀k

[πi,s]s∈S ∈ Gi (P, vi)

}
.

It can be verified that G (P, V ) is also closed, bounded, and upper hemicontinuous.
The following definition is needed to define the sequence of economies.

27It is important to note that P cannot be an equilibrium whenever the second part of Fi (P )’s definition
is invoked.
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Definition C2 A sequence of correspondences f (n) (P ) uniformly converge to f (P ) if and only if,
for any ε > 0, there exists N ∈ N, such that when n ≥ N ,

sup
P
dH

(
f (n) (P ) , f (P )

)
≤ ε,

where dH is Hausdorff distance, i.e.,

dH

(
f (n) (P ) , f (P )

)
= max

{
supY ∈f(P ) infY (n)∈f (n)(P )

∥∥Y (n) − Y
∥∥ ,

supY (n)∈f (n)(P ) infY ∈f(P )

∥∥Y (n) − Y
∥∥
}
,

where ‖·‖ is the Euclidean distance.

Let
{

Γ(n)
}
n∈N be a sequence of economies where Γ(n) =

{
S, I(n), Q(n), V (n),K(n)

}
and ∀n ∈ N:

(i) I(n) ⊂ I(n′) and q
(n)
s < q

(n′)
s for all s if n < n′;

∣∣I(n)
∣∣ =

∑
s∈S q

(n)
s ; and q

(n)
s /

∣∣I(n)
∣∣ = qs/I;

(ii) K(n) is such that the associated priority groups satisfy
∣∣{i ∈ I(n)|ks,i = k

}∣∣ / ∣∣I(n)
∣∣ = Cs,k,

for all k and s, where Cs,k is a constant.

(iii) the number of objects, S = |S|, is constant;

(iv) the corresponding per capita demand G(n)
(
P, V

(n)
−i

)
→ g (P ) uniformly as n→∞.

Remark C1 Analogous to the regularity imposed in the main text, the above restrictions on the
sequence of economies can also be interpreted as regular conditions.

Remark C2 g (P ) is a convex-valued, closed, bounded, and upper hemicontinuous correspondence,
since G(n)

(
P, V (n)

)
has these properties. This definition includes two special cases: (i) a sequence

of replica economies where G(n)
(
P, V (n)

)
= g (P ), for all n ∈ N; and (ii) a sequence of economies

in which agents’ preference-priority profiles are i.i.d. drawn from a joint distribution of preferences
and priorities, while holding constant the relative size of each priority group at each object.

C.2 Results and Proofs

We first present a result on the set of equilibrium prices and then another on the limiting incentive
compatibility.

Lemma C2 In the sequence of economies
{

Γ(n)
}
n∈N, let P(n)

ui ⊂ [0,+∞]S×k be the set of PM

equilibrium prices given
(
ui, V

(n)
−i

)
. Then limn→∞ dH

(
P(n)
vi ,P

(n)
ui

)
= 0, ∀ui ∈ [0, 1]S, for any i in

all I(n).

Proof. This is proven by the following three steps.

(1) Misreporting cannot affect per capita demand by priority groups in the limit.

First, recall that per capita demand of each priority group at each object is G (P, v) for P ∈
[0,+∞]S×k ≡ P and v is the tuple of all agents’ preferences.
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Since each agent can increase or decrease the total demand of a priority group of an object

at most by one copy, ∀ [ds,k]s∈S,k∈K ∈ G(n)
(
P,
(
ui, V

(n)
−i

))
, there must exist

[
d′s,k

]
s∈S,k∈K

∈

G(n)
(
P,
(
vi, V

(n)
−i

))
, such that, ∀s, ∀k,

d′s,k −
1∣∣I(n)
∣∣ ≤ ds,k ≤ d′s,k +

1∣∣I(n)
∣∣ .

Similarly, ∀
[
d′s,k

]
s∈S,k∈K

∈ G(n)
(
P,
(
vi, V

(n)
−i

))
, there exists [ds,k]s∈S,k∈K ∈ G

(n)
(
P,
(
ui, V

(n)
−i

))
,

such that ∀s, ∀k,

ds,k −
1∣∣I(n)
∣∣ ≤ d′s,k ≤ ds,k +

1∣∣I(n)
∣∣ .

Therefore, given any P ,

sup
ui∈[0,1]S

dH

(
G(n)

(
P,
(
ui, V

(n)
−i

))
, G(n)

(
P,
(
vi, V

(n)
−i

)))
≤
√
Sk∣∣I(n)
∣∣ ,

which implies that, given any P ,

lim
n→∞

sup
ui∈[0,1]S

dH

(
G(n)

(
P,
(
ui, V

(n)
−i

))
, G(n)

(
P,
(
vi, V

(n)
−i

)))
= 0. (3)

By definition, G(n)
(
P,
(
vi, V

(n)
−i

))
→ g (P ) uniformly. Therefore, Equation (3) implies that

G(n)
(
P,
(
ui, V

(n)
−i

))
converges to g (P ) uniformly as n→∞.

(2) Price Adjustment Process

Similar to the proof for Theorem 1, define Z ≡ [zs,k]s∈S,k∈K ∈ [0, π/2]S×k ≡ Z, where zs,k =

arctan (ps,k), ∀s, ∀k.
A price adjustment process for Γ(n) is defined as,

H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
≡

Y = [ys,k]s∈S,k∈K

∣∣∣∣∣∣ ys,k
(
[ds,k]k∈K

)
= min

{
π/2,max

[
0, zs,k +

(∑k
κ=1 ds,κ − qs/I

)]}
∀ [ds,k]s∈S,k∈K ∈ G

(n)
(
T AN (Z) ,

(
vi, V

(n)
−i

))  ,

where, T AN (Z) ≡ [tan (zs,k)]s∈S,k∈K. It is straightforward to verify that the correspondence H is

a mapping from Z to Z, given
(
vi, V

(n)
−i

)
. Similarly,

H [Z, g (T AN (Z))]

≡

{
Y = [ys,k]s∈S,k∈K

∣∣∣∣∣ ys,k
(
[ds,k]k∈K

)
= min

{
π/2,max

[
0, zs,k +

(∑k
κ=1 ds,κ − qs/I

)]}
∀ [ds,k]s∈S,k∈K ∈ g (T AN (Z)) ;

}
.

Claim: H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
→ H [Z, g (T AN (Z))] uniformly as n→∞.
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The uniform convergence of G(n)
(
P,
(
vi, V

(n)
−i

))
to g (P ) means that ∀ε > 0, ∃N ∈ N, such

that when n > N , ∀P ∈ P, i.e., ∀Z ∈ Z,

sup[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)
(
P,
(
vi,V

(n)
−i

)) inf
[ds,k]

s∈S,k∈K∈g(P )

∥∥∥∥[d(n)
s,k − ds,k

]
s∈S,k∈K

∥∥∥∥ ≤ ε, and

sup
[ds,k]

s∈S,k∈K∈g(P )

inf[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)
(
P,
(
vi,V

(n)
−i

))
∥∥∥∥[d(n)

s,k − ds,k
]
s∈S,k∈K

∥∥∥∥ ≤ ε.

By the definition of the Euclidean distance, the first inequality implies that,

sup[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)

inf
[ds,k]

s∈S,k∈K∈g(P )

∥∥∥∥∥∥
 min

{
π
2 ,max

[
0, arctan (ps,k) +

(∑k
κ=1 d

(n)
s,κ − qs

I

)]}
−min

{
π
2 ,max

[
0, arctan (ps,k) +

(∑k
κ=1 ds,κ −

qs
I

)]} 
s∈S,k∈K

∥∥∥∥∥∥
≤ ε.

Or, equivalently,

sup
Y (n)∈H

[
Z,G(n)

(
T AN (Z),

(
vi,V

(n)
−i

))] inf
Y ∈H[Z,g(T AN (Z))]

∥∥∥Y (n) − Y
∥∥∥ ≤ ε. (4)

Similarly, we have,

sup
Y ∈H[Z,g(T AN (Z))]

inf
Y (n)∈H

[
Z,G(n)

(
T AN (Z),

(
vi,V

(n)
−i

))]∥∥∥Y (n) − Y
∥∥∥ ≤ ε. (5)

Since (4) and (5) are satisfied for all n > N and ∀Z ∈ Z, H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
converges to H [Z, g (T AN (Z))] uniformly.

From the proof for Theorem 1, H
[
Z,G(n)

]
is upper hemicontinuous and convex-valued and

thus satisfies all the conditions of Kakutani’s fixed-point theorem.

Claim: Given
(
vi, V

(n)
−i

)
and any equilibrium price P ∈ P, its positive monotonic transforma-

tion Z ∈ Z is a fixed point of H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
.

If P ∗ is an equilibrium price, there must exist a unique k∗ (s) ∈ K for each s such that, for some

[ds,k]s∈S,k∈K ∈ G
(n)
(
P ∗,

(
vi, V

(n)
−i

))
,

(i) p∗s,k∗(s) ∈ [0,+∞) and
∑k∗(s)

κ=1 ds,κ = qs
I ,

(ii)
∑k

κ=1 ds,κ <
qs
I and p∗s,k = 0 if k < k∗ (s), and

(iii) ds,k = 0 and p∗s,k = +∞ if k > k∗ (s).
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Let P ∗ = T AN (Z∗), given the same [ds,k]s∈S,k∈K, we must have

min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
= 0 = z∗s,k, if k < k∗ (s) ;

min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
= z∗s,k, if k = k∗ (s) ;

min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
=

π

2
= z∗s,k, if k > k∗ (s) .

Therefore, Z∗ ∈ H
[
Z∗, G(n)

(
T AN (Z∗) ,

(
vi, V

(n)
−i

))]
.

Note that not every fixed point of H is a PM equilibrium price matrix as the proof for Theorem
1 has discussed, while the transformation of any equilibrium price matrix is a fixed point.

Similarly, when agent i reports ui, H
[
Z,G(n)

(
T AN (Z) ,

(
ui, V

(n)
−i

))]
has the same proper-

ties and converges to H [Z, g (T AN (Z))] uniformly, since G(n)
(
P,
(
ui, V

(n)
−i

))
converges to g (P )

uniformly. In the same manner, the transformations of all the equilibrium prices can be found as

a fixed point of H
[
Z,G(n)

(
T AN (Z) ,

(
ui, V

(n)
−i

))]
.

Denote P(∞)
vi as the set of equilibrium prices corresponding to the subset of fixed points of

H [Z, g (T AN (Z))] which all have PM price properties (i.e., the structure of priority-specific prices).

(3) Asymptotic Equivalence of P(∞)
vi and P(n)

ui .

In equilibrium, some prices may be +∞ for some s and k. We supplement the definition of
Euclidean distance by defining the following for +∞:28

|(+∞)− (+∞)| = 0;
√

+∞ = +∞; (+∞)2 = +∞;

|(+∞)− x| = |x− (+∞)| = +∞, ∀x ∈ [0,+∞) ;

and (+∞) + x = +∞, ∀x ∈ [0,+∞] .

For any P̂ (n) ∈ P(n)
ui , by definition, ∃

[
d

(n)
s,k

]
s∈S,k∈K

∈ G(n)
(
P̂ (n),

(
ui, V

(n)
−i

))
, such that qs/I =∑k

κ=1 d
(n)
s,κ , ∀s. Since G(n)

(
P,
(
ui, V

(n)
−i

))
→ g (P ) uniformly as n→∞,

lim
n→∞

inf
[ds,k]

s∈S,k∈K∈g(P̂
(n))

∥∥∥∥∥∥[qs/I]s∈S −

 k∑
κ=1

ds,κ


s∈S

∥∥∥∥∥∥ = 0,

28ps,k = +∞ means that there is no supply for the preference group k at school s. It therefore makes
sense to define the distance between +∞ and +∞ as 0.
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which implies that Z = T AN−1
(
P̂ (n)

)
has to be a fixed point of H [Z, g (T AN (Z))] in the limit.

Therefore for some P ∗ ∈ P(∞)
vi ,

lim
n→∞

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0,

which means that, more precisely,

(i) when n is large enough, there is [k∗ (s)]s∈S ∈ KS such that ∀s, 0 ≤ p∗s,k∗(s), p̂
(n)
s,k∗(s) < +∞;

p∗s,k = p̂
(n)
s,k = 0 if k < k∗s ; p

∗
s,k = p̂

(n)
s,k = +∞ if k > k∗s ;

(ii) limn→∞

∥∥∥[p∗s,k∗(s)]s∈S − [p̂(n)
s,k∗(s)

]
s∈S

∥∥∥ = 0.

Since this is true ∀P̂ (n) ∈ P(n)
ui ,

lim
n→∞

sup
P̂ (n)∈P(n)

ui

inf
P ∗∈P(∞)

vi

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0. (6)

On the other hand, for any P ∗ ∈ P(∞)
vi , by definition, ∃ [ds,k]s∈S,k∈K ∈ g (P ∗), such that

qs/I =
∑k

κ=1 ds,κ, ∀s. Since G(n)
(
P,
(
ui, V

(n)
−i

))
converges to g (P ) uniformly,

lim
n→∞

inf[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)
(
P ∗,
(
ui,V

(n)
−i

))
∥∥∥∥∥∥[qs/I]s∈S −

 k∑
κ=1

d(n)
s,κ


s∈S

∥∥∥∥∥∥ = 0,

which implies that P ∗ is an asymptotic equilibrium price for
(
ui, V

(n)
−i

)
, i.e.,

lim
n→∞

inf
P̂ (n)∈P(n)

ui

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0.

Thus the above two properties (i) and (ii) are satisfied. Since this is true for all P ∗ ∈ P(∞)
vi , therefore

lim
n→∞

sup
P ∗∈P(∞)

vi

inf
P̂ (n)∈P(n)

ui

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0. (7)

Combining (6) and (7), we have limn→∞ dH

(
P(∞)
vi ,P(n)

ui

)
= 0, ∀ui ∈ [0, 1]S and for any i in all

I(n).
Furthermore, limn→∞ dH

(
P(∞)
vi ,P(n)

vi

)
= 0 and, therefore, limn→∞ dH

(
P(n)
vi ,P

(n)
ui

)
= 0, ∀ui ∈

[0, 1]S and for any i in all I(n).

Proposition C1 Suppose i is in every economy of the sequence
{

Γ(n)
}
n∈N. PM is limiting indi-

vidually incentive compatible for i.

Proof. By Lemma C2, for any ξ > 0, there exists n∗ such that for n > n∗ and for every price in

Pui ∈ P
(n)
ui there exists a price Pvi ∈ P

(n)
vi such that |Pvi − Pui | < ξ.

We define the indirect utility function Wui (P ) as the expected utility (with respect to true
preferences vi) that i can obtain when reporting ui given price P . By the maximum theorem, i’s
utility maximization problem implies that Wui (P ) is continuous in P . Moreover, the utility from
manipulation, Wui (P ), is always bounded above by Wvi (P ). Therefore, Wui (Pui) ≤Wvi (Pui).
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When ξ is set small enough, the continuity of Wvi (.) implies that we can find Pvi ∈ P
(n)
vi in all

large enough economies (n > n∗) such that:

|Wvi (Pui)−Wvi (Pvi)| < ε.

Therefore,
Wui (Pui) ≤Wvi (Pui) < Wvi (Pvi) + ε.

Or equivalently,
Wvi (Pvi) > Wui (Pui)− ε,

which proves that PM is limiting individually incentive compatible for i.
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