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Abstract

In allocating goods with no use of monetary transfers, random allocation mechanisms can be

designed in order to elicit information on preference intensities. I study the nontransfer allocation

of two ex-ante identical objects under Bayesian incentive compatibility, with symmetric agents

and independent private valuations. I �nd the ex-ante utilitarian-optimal mechanism, in which

the probability of receiving a speci�ed object is used as "numeraire" to purchase probability units

of the other object. I characterize this mechanism as an appropriate combination of lotteries,

auctions and insurance. The latter element ensures that e¢ cient auctions are feasible. If the

problem is constrained to guarantee exactly one object per agent, then the optimal mechanism

uses no more information than the agents�ordinal preferences.
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JEL codes: D02, D78, D82.

1 Introduction

An important question in Economics is how we should allocate our goods and resources. I study the allocation

of two ex-ante identical objects to an arbitrary number of ex-ante identical agents,1 each possibly demanding
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Història Econòmica, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona,
Spain. I am grateful to the anonymous referees, Atila Abdulkadiro¼glu, Miguel Angel Ballester, Yeon-Koo
Che, Barton Lipman, Zvika Neeman, Andrew F. Newman, Parag Pathak, Gregory Pavlov and Pedro Rey-
Biel for previous comments and suggestions. During the research I received �nancial support from the
Caja Madrid Foundation, the Spanish Ministry of Science and Innovation (ECO2009-06946 and ECO2008-
04756), Boston University and the European University Institute (Max Weber Programme), which I kindly
acknowledge. Special thanks to Chiara.

1 In this paper, ex-ante is understood as the stage at which the agents have not learnt their own preferences,
although they know how these are stochastically distributed. Interim refers to the stage at which each agent
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both objects. In the allocation problem I study, each agent knows how she valuates these objects though

she does not know the other agents�valuations. I solve the problem of �nding a mechanism that allocates

the objects so as to maximize ex-ante utilitarian welfare, i.e. the unweighted sum of every agent�s ex-

ante expected payo¤,2 given the constraint that the mechanism cannot use any monetary transfer. To my

knowledge, this is the �rst time that a mechanism design approach is taken in order to obtain a welfare-

maximizing several-object random allocation mechanism without transfers.

When monetary transfers are allowed, the well-known Vickrey-Clarke-Groves mechanism (Vickrey, 1961;

Clarke, 1971; Groves, 1973) uses these transfers to elicit information on each agent�s preferences.3 Yet

money is not used in many contexts, such as collusion in markets, task allocation in organizations, supply

of company slots in airport terminals, children placement in public schools, housing allocation in colleges...

This motivates the search for a solution to the allocation problem without monetary transfers.

The use of random allocations, or the allocation of assignment probabilities, proves to be useful in solving

this problem. It exploits the agents�cardinal preferences, i.e. the intensity by which one object is preferred

to the other, in a way that resembles a mechanism with monetary transfers. Intuitively, the assignment

probability regarding one of the objects can play the role of money, i.e. it becomes the numeraire.

I �nd that, under certain plausible conditions on the distribution of valuations (more on this below), the

optimal mechanism consists of a mixture of lotteries, auctions and insurance. When not all the agents declare

to prefer the same good, each good is assigned by even lottery among the agents who declare a preference

for it. When all the agents declare to prefer the same good, the non-preferred object is e¢ ciently4 auctioned

o¤ using the allocation probabilities of the preferred object as the numeraire. Since this numeraire is scarce

and the optimal unrestricted bid might be capped by the endowed probabilities of the preferred object, an

insurance policy is needed for the object to be e¢ ciently auctioned o¤. The insurance policy allows for lower

bids than otherwise necessary to guarantee an e¢ cient auction in exchange of a lower payo¤ in states of the

world when an auction is not needed.

For the same reason the e¢ cient auction alone may not provide the optimal random allocation, splitting

the two objects in equal allocation probabilities among the agents and letting them trade these probabilities

has only learnt her own preferences, although she knows how the other agents�preferences are distributed.
In the ex-post stage, each agent has learnt all agents�preferences.

2This will be regarded simply as "welfare" throughout this paper. As noted by the referees, Harsanyi
(1955) shows that any social welfare function takes the form of a weighted sum of individuals� cardinal
utilities under simple axioms. If the "veil of ignorance" (no agent knows in advance which social position -
and its associated weight- she shall obtain, and she attaches the same subjective probability to every position)
were imposed, all social positions would have the same weight in the welfare function. This would justify
the utilitarian welfare approach.

3More recent work has analyzed the validity of the VCG mechanism under more general assumptions such
as interdependent valuations (see for instance McLean and Postlewaite, 2006).

4The non-preferred object is assigned with probability 1 to the agent that relatively prefers it most.
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may not provide the optimal random allocation either. An agent could be willing to trade away more

probability units of an object than what the given endowment allows for. Nevertheless, with only two agents,

I show that no insurance policy is necessary in the equilibrium (the symmetric Bayesian Nash equilibrium,

here as in the rest of this paper) of the game the mechanism induces. Both the market with equal endowments

and the previous lottery-auction mechanism (without insurance) are optimal with two agents.

The steps in �nding the solution to this allocation problem are as follows. Under a minor regularity

condition,5 Proposition 1 tells us that if not all agents prefer the same object, an agent who prefers one of

the objects shall not hold any chances to obtain her non-preferred object. In such a case, each object has

to be randomly assigned among the agents who prefer it. In fact, an allocation that does not satisfy this

condition would be dominated (in terms of welfare) by an allocation induced by an alternative mechanism6

that gives any agent more chances to obtain the object she prefers. The question then is how to proceed

when all the agents prefer the same object.

This question could be understood as an e¢ cient (welfare-maximizing) auction problem, in which the non-

preferred object is auctioned o¤ using the allocation probabilities of the preferred object as the numeraire.

In our problem, however, the numeraire generates a marginal utility to each agent that depends on her

preferences, instead of being constant. In an e¢ cient auction, the contribution that each agent makes to

overall welfare given her preferences is simply her valuation for the auctioned object. The preference for the

numeraire does not matter since it is the same for all agents. In the problem at hand, on the contrary, an

agent�s contribution to welfare, which I call criterion function, is rather more complex due to the di¤erence

just mentioned.

Additionally, the numeraire in our problem is a scarce good in itself. Proposition 2 simpli�es this issue:

if the criterion function is a non-negative function, we can ignore the constraints regarding the fact that

the numeraire is scarce. A rough intuition is that in equilibrium, for each additional probability unit of

obtaining the preferred object any agent must be willing to sacri�ce more than one probability unit of the

non-preferred object. Otherwise the agents would trade all the chances to obtain the non-preferred object

away. The probability allocations of the non-preferred object are then extreme (i.e. more concentrated on a

few agents) as compared to those of the preferred object. Thus if the non-preferred object is given away (which

optimally happens when the criterion function is non-negative), allocating valid probabilities, the optimal

mechanism would also generate valid allocation probabilities for the preferred object in equilibrium.

5This regularity condition is mathematically described in the main section, and it is met in very intituitive
scenarios such as: 1) all cases in which each agent�s expected valuation for an object, conditional on the
agent�s preference intensity for it, is nondecreasing in this preference intensity, 2) all cases in which if any
two agents prefer the same object, and conditional on their preference intensities, both expected valuations
for the preferred object exceed both expected valuations for the non-preferred object.

6That allocation is the outcome of the equilibrium of the game induced by the mechanism.
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Furthermore, the Corollary to Proposition 2 observes than when each agent�s criterion function is (de-

creasingly) monotone in the intensity with which she prefers her preferred object over her non-preferred

object,7 the non-preferred object shall be optimally assigned to the agent with highest criterion function,

that is, the agent that relatively prefers the non-preferred object most (an e¢ cient auction). Hence, Propo-

sitions 1 and 2 and this Corollary (under the previous regularity and monotonicity conditions)8 brings us the

procedure to implement the optimal mechanism that has been described: lotteries if not all agents prefer the

same object, e¢ cient auctions otherwise and insurance to guarantee that the e¢ cient auction is feasible.

I also consider an extended allocation problem where there is an additional constraint that each agent

receives exactly one object. Only unit demands are accepted. This constraint turns the problem into what I

call the two-school random assignment problem. The additional constraint reduces the scope of the planner�s

design since assigning to an agent an additional probability unit regarding one object must come at the cost

of reducing exactly one probability unit regarding the other object. This means that no truthful and useful

information on preference intensities can be elicited, since the opportunity cost of an additional probability

unit regarding an object must be the same for all agents. Consequently, in this two-object case, only ordinal

preferences can be usefully elicited.

Literature

The literature has extensively analyzed nontransfer allocation mechanisms that rely on agents�ordinal

preferences. This has typically been the case in one-sided and two-sided matching problems, in the social

choice literature and in allocation games where more than one object might be allocated to a single agent

(Gibbard, 1973; Satterthwaite, 1975; Olson, 1991; Pápai, 2000; Pápai, 2001; Ehlers and Klaus, 2003).

The ranking mechanism (Campbell, 1998; Pesendorfer, 2000) is appealing among these mechanisms in

that: 1) as the number of objects grows large, ranking mechanism approaches full e¢ ciency , and 2) under

the i.i.d. assumption the ranking mechanism maximizes welfare among mechanisms using only information

on ordinal preferences. The ranking mechanism works as follows with two objects. First, each agent declares

which object she prefers. Then, the planner randomly allocates each object to an agent who declares a

preference for it. If all agents declare to prefer the same object, each object is randomly allocated among all

agents.

The present paper analyzes mechanisms where also the intensity of preferences is taken into account. In

states of the world in which all agents prefer the same object, the optimal mechanism manages to e¢ ciently

assign the non-preferred object, whereas the ranking mechanism assigns probabilities evenly. Numerical

comparisons between the optimal mechanism and the ranking mechanism reveal substantial welfare gains

7By comparison with auction theory, this condition would be analogous to the standard assumption that
each agent�s "virtual valuation" is monotonically increasing in her valuation for the auctioned object.

8Examples of well-known prior distributions of valuations that satisfy both the regularity and the monotone
criterion function conditions are the uniform and the exponential distribution.
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with two agents. To illustrate the comparison, let us normalize the welfare attained when the planner is

perfectly informed about the agents�preferences to 1 and the welfare under even randomization to 0. Then,

under uniform priors, the ranking mechanism obtains a welfare of 1/2 whereas the optimal mechanism attains

2/3. However, the welfare di¤erence between the optimal mechanism and the ranking mechanism is of the

order of 1/2n�1, where n is the number of agents, vanishing when n is in�nitely large.

Many attempts to propose nontransfer mechanisms that account for the intensity of preferences are

observed. A seminal work is Hylland and Zeckhauser (1979) on pseudomarkets. The mechanism designer, or

planner, provides each agent with "fake" money (e.g. points). A pseudomarket for objects (job positions in

their study) is generated in which agents buy units of probability to be assigned to each object using this fake

money. A tatônement process yields equilibrium prices. The solution is naturally Pareto-e¢ cient. The only

drawback of this solution is that when the number of agents is �nite, any agent might behave strategically

in order to pro�tably alter equilibrium prices. Mechanisms accounting for the intensity of preferences are

also studied in recent literature on voting and political compromise (Saari, 2000; Casella, 2005; Casella and

Gelman, 2005; Börgers and Postl, 2006). Recent School Choice literature (studying the assignment of children

to public schools) is also taking the intensity of preferences into account. For instance, Abdulkadiro¼glu, Che

and Yasuda (2009) argue that the Boston Mechanism, critisized since it is not strategy-proof, could perform

better (in terms of welfare) than strategy-proof mechanisms such as Deferred Acceptance precisely because

strategic agents indirectly submit information on their preference intensities to the assignment algorithm.

Another related paper on nontransfer allocation with preference intensities is Abdulkadiro¼glu and Loertscher

(2007) on housing assignment. Finally, Condorelli (2010) has a very recent work in which a set of identical

goods is optimally allocated using waiting time instead of money to elicit agents�preferences.

Departing from previous work, the present paper aims to �nd a welfare-maximizing random allocation

mechanism in which agents interact strategically, each one only knowing her own valuations. I consider the

two-object case for tractability reasons. But even the two-object case is challenging without transfers9 and

involves two-dimensional private information.10 The derivation of the optimal allocation of more than two

objects remains a subject for further research.

Section 2 presents and solves the optimal allocation problem. Section 3 deals with implementation and

compares the optimal mechanism to the ranking mechanism. Section 4 analyzes the two-school random

assignment problem. Section 5 discusses possible extensions. Section 6 concludes. An Appendix presents

long proofs.

9Armstrong (2000) studies the assignment of two objects when monetary transfers can be used.
10 I avoid simpli�cations such as the use of unidimensional types to depict valuations for several objects
(Krishna and Rosenthal, 1996; Levin, 1997; Menezes and Monteiro, 2003).
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2 The optimal mechanism

This Section formalizes and solves the nontransfer allocation problem. The problem is initially presented as

a direct mechanism, where the random allocation is a function of the agents�reported preferences, and the

allocation function is designed so that the agents have no incentives to misreport their preferences. Each

agent�s assigned probabilities depend on the other agents�reported preferences. However, the other agents�

preferences are unknown to the former agent (the so-called independent private valuations assumption), thus

what is relevant to her is the interim expected allocation, i.e. taking expectations of the assigned probabilities

with respect to the distribution of the other agents�preferences. Then the problem is rewritten in its reduced

form, where the random allocation mechanism is expressed in interim probabilities.

The second subsection solves this modi�ed problem. The reduced-form, direct mechanism is useful

because there is a standard procedure to simplify the problem that uses interim probabilities. The constraints

implied by the need to refrain agents from misreporting their preferences, called the incentive compatibility

constraints, are manipulated in order to get the interim allocation of one object as a function of the interim

allocation of the other object. Propositions 1 and 2 characterize the way in which this simpli�ed problem

can be solved.

2.1 The direct mechanism problem and its reduced form

Two indivisible objects are to be allocated among n agents. Each agent i 2 N � f1; :::; ng has a nonnegative

valuation vih for each object h 2 f1; 2g, measuring the utility that agent i would obtain if she is given object

h. Let vi � (vi1; v
i
2). Each valuation vector is independently drawn from the same atomless distribution

function F , with associated density f which is assumed to be di¤erentiable a.e.. For any positive valuations

x and y, assume that f(x; y) = f(y; x). Therefore, the marginal distributions (denoted as ~F throughout the

paper), i.e. the distributions of the valuations for each object, are identical.11

Each agent i learns the realization of her valuation vector vi only, according to the independent private

valuations assumption. The planner only knows the prior distribution from which all valuations are drawn.

The utility of an agent who obtains the two objects equals the sum of her valuations. For the moment, no

restriction is placed on the number of objects an agent can obtain: zero, one or both. It might also be the

case that some object is not given to any agent. Alternative assumptions are analyzed in Sections 4 and 5.

The direct mechanism problem. The mechanism designer, or planner, designs a lottery mechanism to

allocate the objects with the aim of maximizing the sum of the agents�ex-ante expected utilities. According

to the Revelation Principle, the mechanism can be expressed as a direct mechanism, consisting of an ex-post

probability matrix function ~q : R2n+ ! [0; 1]2n subject to the feasibility constraints
Pn
i=1 ~q

i
h(v

1; :::; vn) � 1;
11Note that this includes i.i.d. object valuation distributions.
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8h 2 f1; 2g; and to incentive compatibility (described below).

The reduced form, or interim, allocation probabilities are ~Qih(v
i) � ENnfig~q

i
h(v

1; :::; vn);12 denoting

~Qi(vi) � ( ~Qi1(v
i); ~Qi2(v

i)). Agent i�s interim expected utility from the allocation mechanism is ~U i(vi) �
~Qi(vi) � vi. The objective function can be formulated as ~O � EN

Pn
i=1

~U i(vi) = EN
Pn
i=1

~Qi(vi) � vi, i.e. the

sum across agents of their ex-ante expected payo¤s.

The (Bayesian, or interim) incentive compatibility constraints can be described as a set of inequalities

~Qi(vi) � vi � ~Qi(~vi) � vi, 8i 2 f1; :::; ng, 8(vi; ~vi) 2 R4+. That is, no agent has an incentive to misreport her

preferences, given that no other agent misreports her own.

For each agent i, it is useful to transform her valuation vector into two new variables: a bundle valuation

Bi = vi1 + vi2, and a relative preference (or preference intensity) parameter r
i = vi2=B

i 2 [0; 1].13 Bi is the

utility agent i would obtain if she were given both objects and ri measures how intensely agent i prefers

object 2 to object 1. Observe that ri � 1=2 () vi2 � vi1 and that r
i = 1=2 is equivalent to being

indi¤erent between the two objects. Informally, agent i has "intense preferences" when
��ri � 1=2�� is "high",

and "moderate preferences" when
��ri � 1=2�� is "low".

There is a one-to-one relation between the relative preference parameter ri and the marginal rate of

substitution vi2=v
i
1. Let 	 denote the distribution function of any ri. Its associated density function is

denoted by  . From my assumptions on F , the distribution of ri is symmetric with respect to r = 1=2,

i.e.  (1 � ri) =  (ri), 	(1 � ri) = 1 � 	(ri), and 	(1=2) = 1=2. The following lemma presents several

simpli�cations of the problem. I omit the easy proof.14

Lemma 1 1) Any interim incentive compatible mechanism for this problem satis�es ~Qi(vi)�vi = ~Qi(avi)�vi,

for any i, vi and a > 0 (Pesendorfer, 2000). Thus the planner can restrict herself to allocation functions

that depend on relative preference parameters, namely q : [0; 1]n ! [0; 1]2n:

2) Since agents are ex-ante symmetric, the planner can without loss of generality restrict attention to

anonymous mechanisms, that is, for any (r1; :::; rn) 2 [0; 1]n , any object h and any permutation � over

an n-dimensional vector, we have qh(�(r1; :::; rn)) = �(qh(r
1; :::; rn)). An r�type agent�s interim allocation

probabilities can be denoted as Q(r) = [Q1(r); Q2(r)], which does not depend on her identity.

3) Given the assumptions on F , the planner can without loss of generality restrict attention to allocation

functions satisfying qih(r
1; :::; rn) = qi3�h(1 � r1; :::; 1 � rn); 8i 2 f1; :::; ng; 8h 2 f1; 2g; a.e., and therefore

Qh(r) = Q3�h(1� r) a.e..

12Let ~N � N: Thoughout this paper, E ~N denotes the expectation operator taking the distribution of the
preferences of all agents in ~N . If no subscript is used, E denotes the expectation using the distribution F of
one agent�s preferences.
13Armstrong (2000) uses polar coordinates instead, when dealing with the two-object revenue-maximizing
auction design problem. His approach and the one taken here are equivalent.
14This lemma holds also for the case of strategy-proof mechanisms, as Hortalà-Vallvé (2007) shows.
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The anonymity of the optimal mechanism allows to skip the superscript identifying a speci�c agent i (e.g.

I use r instead of ri and v1 instead of vi1). In what follows r, ~r and r
0 refer to di¤erent values of the relative

preference parameter, and r̂ denotes the relative preference parameter when treated as a random variable.

For a given variable X, E(X jr ) denotes the conditional expectation of X, using the distribution F of one

agent�s preferences, given r̂ = r.

Rewriting the problem in its reduced form. An agent�s interim expected utility, given the rescaled

vector (B; r), is de�ned as U(B; r) � B[rQ2(r) + (1� r)Q1(r)]. Since agents are ex-ante symmetric and all

have the same weight in the welfare function, the planner can consider one agent�s payo¤ as her objective

function. This function can be expressed as
R 1
0
 (r)E(B jr )u(r)dr, where

u(r) � rQ2(r) + (1� r)Q1(r)

Due to the assumptions on F and to the symmetry of the optimal mechanism, it can be shown that

E(B jr ) = E(B j1� r ) and u(r) = u(1 � r), for any r 2 [0; 1]. Additionally, for any such r it was already

known that  (r) =  (1� r). Under these circumstances, it is enough to maximize the following function,

O �
Z 1

1=2

 (r)E(B jr )u(r)dr

and the optimal reduced-form probabilities need to be calculated only for r � 1=2.

The incentive compatibility constraints are rewritten as

u(r) � rQ2(r) + (1� r)Q1(r) � rQ2(~r) + (1� r)Q1(~r); 8(r; ~r) 2 [0; 1]2 (IC)

Notice that B disappears from these constraints, which is intuitive since Q(�) does not depend on the

bundle valuation.

Remark 1 (IC) can be additionally simpli�ed in that it just needs to apply to any pair (r; ~r) 2 [1=2; 1]2.

Proof. Consider r > 1=2 and ~r < 1=2. (IC) jointly with the symmetry of Q implies Q2(r) � Q1(r)

(otherwise, given Q2(1 � r) = Q1(r) and Q1(1 � r) = Q2(r) by the symmetry of Q, an r-type agent would

pro�tably claim to be of type 1� r). Likewise, Q2(1� ~r) = Q1(~r) � Q1(1� ~r) = Q2(~r). Let us assume that

(IC) is met for the pair (r; 1� ~r)2 [1=2; 1]2. Since r > 1� r, we have u(r) � rQ2(1� ~r)+ (1� r)Q1(1� ~r) �

rQ2(~r)+(1�r)Q1(~r), thus (IC) is met for (r; ~r). Let us assume that (IC) is met for the pair (1�~r; r)2 [1=2; 1]2.

Since ~r < 1 � ~r, we have ~rQ2(r) + (1 � ~r)Q1(r) � (1 � ~r)Q2(r) + ~rQ1(r)(� u(1 � ~r)). By symmetry

u(~r) = u(1� ~r), thus (IC) is met for (~r; r).
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For the case in which both r < 1=2 and ~r < 1=2, the symmetry of Q su¢ ces to guarantee that (IC) is

met for both (r; ~r) and the inverted pair (~r; r), provided it is met by both (1� r; 1� ~r) and the inverted pair

(1� ~r; 1� r).

Both the objective function and the incentive compatibility constraints depend on reduced-form (or

interim) probabilities, whereas any feasibility constraints are typically characterized as a relation among

ex-post allocation probabilities (where superscripts are still needed):

qih(r
1; :::; rn) � 0; 8i 2 f1; :::; ng;8h 2 f1; 2g

nX
i=1

qih(r
1; :::; rn) � 1; 8h 2 f1; 2g (feasibility)

Considering a reduced-form allocation Q, it is understood that it is feasible if there exists a feasible ex-

post allocation q such that for any i 2 N , ENnfigqi = Q. The following result, adapted from Border (1991),

allows for a restatement of feasibility constraints as a set of constraints a¤ecting interim probabilities:

Lemma 2 Under the assumption that Q2(�) is nondecreasing (equivalently, Q1(�) is nonincreasing), a reduced-

form allocation Q is feasible if and only if:

R2(r) � 1�	(r)n � n
Z 1

r

 (x)Q2(x)dx � 0 (Q2-constraints)

R1(r) � 1� [1�	(r)]n

�n
Z 1

1=2

 (x)Q2(x)dx� n
Z r

1=2

 (x)Q1(x)dx

� 0 (Q1-constraints)

for any r 2 [1=2; 1], with Q2(r) � 0 and Q1(r) � 0 for any such r.

Proof. From Border (1991), proposition 3.2, it is known that the feasibility constraints a¤ecting object

2 are equivalent to the family of constraints 1�	(r)n � n
R 1
r
 (x)Q2(x)dx � 0 for any r 2 [0; 1], if Q2(�) is

nondecreasing and nonnegative. This obtains the Q2�constraints when r � 1=2.

I construct the Q1�constraints taking values ~r � 1=2 and using r = 1 � ~r: R2(~r) = 1 � 	(~r)n �

n
R 1
~r
 (x)Q2(x)dx is equal to R1(r) = 1� [1�	(r)]n � n

R 1
1=2

 (x)Q2(x)dx� n
R r
1=2

 (x)Q1(x)dx, by means

of both the symmetry of the distribution of r and the fact that Q1(r) = Q2(1� r) a.e..

Given the symmetry in Q, feasibility with respect to object 2 implies feasibility with respect to object 1,

thus we can safely ignore the feasibility constraints related to object 1.

Border�s result is very useful in this setup. The reduced-form problem constructed provides manageable

tools to prove proposition 1 in this paper. Additionally, in many auction problems an initial interim utility

value (e.g. the interim expected utility of the agent with the lowest possible valuation) is obtained through
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optimality conditions or budget balance constraints. In the present paper, proposition 1 and a Q2-constraint

will be used to obtain such an initial value. Ex-post probabilities q(�) are not useful until the initial value

problem is solved.

To sum up, the direct mechanism has been rewritten in its reduced form: it consists of an interim probabil-

ity vector function Q = (Q1; Q2) : [1=2; 1]! [0; 1]2 satisfying the family of constraints (IC), (Q1�constraints)

and (Q2�constraints). The objective function to maximize isO �
R 1
1=2

 (r)E(B jr )u(r)dr =
R 1
1=2

 (r)E(B jr )�

�[rQ2(r) + (1� r)Q1(r)] dr.

2.2 Solution

As seen in the previous subsection, the optimal allocation mechanism can be solved as a reduced-form

mechanism, in which optimal probabilities are calculated at the interim level. Although the restatement of

the problem as a reduced-form symmetric mechanism has greatly reduced its complexity, the problem is still

cumbersome. The solution process is ordered into several stages: 1) use (IC) to solve Q2(�) out in terms of

Q1(�) and Q2(1); 2) show that Border�s feasibility constraints must bind at 1/2, allowing me to solve Q2(1)

out; and 3) show that the maximization problem can safely ignore the Q2-constraints, so that the optimal

Q1(�) is solved for as in an e¢ cient auction problem.

Solving Q2(�) out. Some manipulations of incentive compatibility constraints allow for a restatement

of them as a family of equations. The goal is to embed those into the model. The following result facilitates

the simpli�cation:

Lemma 3 (IC) is equivalent to: 1) u(r)
r � u(~r)

~r =
R ~r
r
Q1(x)
x2 dx, for any [r; ~r] 2 [1=2; 1]2; and 2) Q1(�) is a

nonincreasing function (or equivalently, Q2(�) is nondecreasing). (IC) also has the following implications:

3) Q1(�) + Q2(�) is nonincreasing on (1=2; 1] (strictly decreasing when Q(r) varies as r is increased), and

that 4) there exists a unique r0 2 (1=2; 1] such that R2(r) > R1(r) for all r 2 (1=2; r0) and R2(r) < R1(r) for

all r > r0.

Proof. See the Appendix.

Point 3) illustrates the trade-o¤ implied by (IC). If an agent wants an additional probability unit of

her most-preferred object, she must be willing to sacri�ce more than one unit of the non-preferred object.

From point 4) in this lemma it can be observed that for low values of r (although higher than 1/2) only the

Q1�constraints may bind. In cases where r0 equals 1, this observation provides a simple way to solve the

allocation problem, since the Q2�constraints become redundant.

To think about points 1) and 2), consider u(r)=r = 1�r
r Q1(r) + Q2(r). (IC) can be divided by r while

keeping the inequality unchanged. After such manipulation of (IC), u(r)=r resembles an interim payo¤
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function in auctions, say �u(�v) �Q(�v) � �T (�v),15 where �v is the agent�s type, �u(�v) is the utility derived from

winning the object for sale, �Q(�v) is the interim probability of winning the auction, and �T (�v) is the interim

expected payment in numeraire units. Analogously, Q2(�) is being used in our problem as the numeraire

that is transferred in exchange of more (or less) Q1(�). Using a standard technique (see the appendix), the

numeraire can be solved out as a function of the interim allocation probabilities of the other object.

In that sense, working with u(r) would not have been enough. The standard procedure would yield

u0(r) = Q2(r)�Q1(r). Consequently, Q2(r) could not have been substituted out in the objective function.

In taking u(r)=r instead, I can use point 1) in the lemma above to obtain a relation between any Q2(r), a

reference value u(1)=1 =Q2(1) and all Q1(x)�s for x 2 [r; 1]:

Q2(r) = Q2(1)�Q1(r)
1� r
r

+

Z 1

r

Q1(x)

x2
dx (1)

leading to u(r) = rQ2(1) + r
R 1
r
Q1(x)
x2 dx.

Solving for Q2(1): The next step is to calculate the value of u(1)=1 = Q2(1).

De�nition 1 The distribution function F satis�es the regularity condition (or is regular) if for any r 2

(1=2; 1]; E(v2 jr ) > max
~r2[1=2;r]

E(v1 j~r )
�
equivalently, E(v2 jr ) > max

r02[1�r;1=2]
E(v2 jr0 ), given the symmetry of F

�
.

Consider two agents i and j. Agent i prefers object h, while j prefers the other object, 3�h. Say that

the latter agent has less intense preferences than the former (i.e.
��rj � 1=2�� � ��ri � 1=2��). The regularity

condition states that, conditional on their preference intensities, the expected vih is higher than the expected

vjh. That is, giving an object to an agent who prefers it provides more welfare than giving that object to an

agent who moderately prefers the other object.

The regularity condition is met in quite general scenarios, yet not in all. On the one side, if E(B jr ) is

"su¢ ciently" decreasing in r on some interval in (1=2; 1], F would not be regular.16 This exception requires

that an agent with intense preferences valuates the bundle much less than an agent with moderate preferences.

On the other side, it is easy to �nd intuitive su¢ cient conditions such that the regularity condition is satis�ed.

For instance, F meets the regularity condition if E(v2 jr ) is not decreasing on (1=2; 1], that is, higher relative

preference for the preferred object is corresponded with a weakly higher (conditionally expected) valuation

for that object. Examples of widely known distributions that meet this condition are the uniform and the

exponential distributions. Other scenarios satisfying the regularity condition are those where if any two

agents prefer di¤erent objects, conditional on their preference intensities, any agent�s expected valuation for

her preferred object is higher than the other agent�s expected valuation for the same object.

Proposition 1 provides us with a key tool to solve this problem.

15This notation has no relation with the one I use in the present paper.
16 In fact, for r > ~r � 1=2, if E(B jr ) << E(B j~r ), we could have E(v2 jr ) = rE(B jr ) � (1� ~r)E(B j~r ) =

E(v1 j~r ).
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Proposition 1 Under the regularity condition, any solution to the allocation problem meets R1(1=2) =

R2(1=2) = 0.

Proof. See the Appendix.

The proof starts from a reduced-form mechanism Q that is feasible and incentive compatible while

R1(1=2) = R2(1=2) > 0. I show that I can construct a feasible, incentive compatible mechanism �Q such that

�Q2(r) � Q2(r) for all r 2 [1=2; 1] (with strict inequality for a positive-measured subset of this domain) and
�Q1(r) � Q1(r) only for r 2 [1=2; ~r]; ~r � 1. Moreover, E[ �Q1(r̂) + �Q2(r̂)] �E[Q1(r̂) +Q2(r̂)]. The regularity

condition ensures then that �Q is welfare-improving with respect to Q.

One interpretation of this proposition is that any agent that declares to prefer object h over 3�h has no

chance to obtain object 3� h in any optimal mechanism, unless all agents declare to prefer the same object

h. To illustrate this statement, observe that given that Q2(�) is nondecreasing, a Q2�constraint binding at

r implies that for any ~r < r; Q2(~r) � 	(r)n�	(~r)n
n[	(r)�	(~r)] < 	(r)

n�1.17 The last element is the probability that no

other agent has a relative preference above r. In other words, if some other agent has a relative preference

above r, an ~r�type agent has no chance to obtain object 2. Applying this argument to the case where

r = 1=2 I obtain the statement I aimed to illustrate.

This interpretation of proposition 1 suggests that the optimal mechanism could be understood as a

re�nement of the ranking mechanism. When some agents prefer object 1 and some other agents prefer

object 2, those preferring one object obtain no chance to receive the other good. Ex ante, the planner has

to provide agents preferring the same object with the same chances of obtaining that object irrespective of

their preference intensities, since the other object cannot be used as numeraire to elicit information on these

intensities. Accordingly, the optimal mechanism di¤ers from the ranking mechanism in the way it allocates

the objects when all agents prefer the same good (e.g. object 2 if r � 1=2).

Using equation (1) and the binding constraint R2(1=2) = 0,18

Q2(1)=2 =
1� (1=2)n

n
+

Z 1

1=2

Q1(r)

�
 (r)

1� r
r

� 	(r)� 1=2
r2

�
dr (2)

Solving for Q1(�): After having calculated Q2(1), the objective function can be expressed as19

O = �+

Z 1

1=2

 (r)Q1(r)C(r)dr (3)

17The �rst inequality arises from 0 � R2(~r) = R2(~r) � R2(r) = 	(r)n � 	(~r)n � n
R r
~r
 (x)Q2(x)dx �

	(r)n � 	(~r)n � n[	(r) � 	(~r)]Q2(~r). The second inequality comes from the fact that 	(r)n�	(~r)n
n[	(r)�	(~r)] is

increasing in ~r and approaches 	(r)n�1 as ~r becomes arbitrarily close to r.
18To derive (2), we start with 1� (1=2)n � n

R 1
1=2

 (r)
h
Q2(1)�Q1(r) 1�rr +

R 1
r
Q1(x)
x2 dx

i
dr = 0.

We then use the formula
R b
a
f(x)

R b
x
g(y)dydx =

R b
a
g(y)

R y
a
f(x)dxdy, and we �nally isolate Q2(1).

19Since O =
R 1
1=2

 (r)E(B jr )u(r)dr and u(r)=r = Q2(1) +
R 1
r
Q1(x)
x2 dx, one obtains O =

12



where � denotes a constant, and C(r) is the "criterion function":

C(r) � 1� r
r

E(v2 jr̂ � 1=2)

�	(r)� 1=2
 (r)r2

[E(v2 jr̂ � 1=2)� E(v2 jr � r̂ � 1=2)]

Notice that C(1=2) > C(1) = 0, and that C(�) is continuous all over [1=2; 1]. To understand the criterion

function, consider the case in which the expected v2 conditional on r is constant. This happens for instance

when F is the uniform distribution function. In such a case, object 2 would be a "standard" numeraire good

in that it generates the same marginal utility to every agent regardless of her type. The problem to solve

would be the one of an e¢ cient auction for object 1, where the criterion function is proportional to 1�r
r ,

the marginal rate of substitution v1=v2 for an r�type agent. And the marginal rate of substitution is the

contribution that an agent gives to the objective function in an e¢ cient auction for object 1.

Unfortunately, the expected v2 conditional on r is typically not constant. The criterion function becomes

more complex because the planner (who allocates both objects) cannot ignore that the numeraire good

generates a utility that depends on the agent�s type r. Let us denote her marginal rate of substitution as

m = 1�r
r 2 [0; 1], with distribution function G(m) and associated density g(m). 	(r)�1=2 (r)r2 is the inverse hazard

rate of the marginal rate of substitution 1�G(m)
g(m) . In the literature on auctions, the "virtual valuation" is

a concept that identi�es the contribution a bidder makes to the seller�s expected revenues. The "virtual

marginal rate of substitution" associated with m is equal to m� 1�G(m)
g(m) . The criterion function divided by

E(v2 jr̂ � 1=2) lies always above the marginal rate of substitution. Yet no other general statement about

the shape of the criterion function can be made.

Since R2(1=2) = 0, the Q1�constraints simplify to:

R1(r) = (1=2)
n � [1�	(r)]n � n

Z r

1=2

 (x)Q1(x)dx � 0; r 2 [1=2; 1] (4)

R 1
1=2

 (r)E(v2 jr )
h
Q2(1) +

R 1
r
Q1(x)
x2 dx

i
dr. After having used equation (2), it yields

O = �+

Z 1

1=2

2 (r)E(v2 jr )dr

�
Z 1

1=2

Q1(r)

�
 (r)

1� r
r

� 	(r)� 1=2
r2

�
dr

+

Z 1

1=2

 (r)E(v2 jr )
Z 1

r

Q1(x)

x2
dxdr

where � is a constant. Using the formula in the previous footnote, the objective function becomes a
constant plus the integral of Q1(r) (r)C(r), where C(r) contains the remaining factors of the integrand.
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The Q2�constraints need not be rewritten here for the purposes of the solution. The problem of maxi-

mizing (3) subject to (4) and to nonincreasing Q1(�) is analogous to the reduced-form version of an e¢ cient

auction problem. The planner decides how to allocate object 1 among types in [1=2; 1], under the constraint

that the presence of an agent whose type belongs to [0; 1=2) makes it impossible for types in [1=2; 1] to

obtain that object.20 In solving this problem, the standard Myerson (1981) "ironing" technique is applied

over C(�).21 The �nal result of this subsection states a su¢ cient condition allowing us to safely ignore the

Q2�constraints.

Proposition 2 Assume that any optimal mechanism satis�es R2(1=2) = 0. Let F be such that E(C(r̂)

jr̂ � r ) � 0 for any r � 1=2. Then, in order to solve for the function Q1, the planner has to maximize O in

equation (3) subject to (4) and to Q1(�) being nonincreasing, ignoring the Q2-constraints. In order to solve

for the function Q2, the planner has to use the already solved Q�1, jointly with equations (1) and (2).

Proof. Given E(C(r̂) jr̂ � r ) � 0 for any r � 1=2, the solution to the suggested problem yields R1(1) = 0

(that is, all objects are �nally given). Since R2(1) = 0 by construction, we have R2(1) � R1(1) = 0. By

construction again, R2(1=2) � R1(1=2) = 0. By this and point 4 in lemma 2, R2(�) � R1(�) cannot be

negative in the whole domain [1=2; 1]. Since R1(�) is nonnegative in that domain, R2(�) cannot be negative,

and therefore the Q2�constraints are met.

The sign of E(C(r̂) jr̂ � r ) determines whether it is optimal to give object 1 away if all agents�types

are inside [r; 1]. If that sign is negative, the planner may not give that object away, and this possibility may

make proposition 2 fail. If the planner cannot commit to a mechanism that may "burn" objects, or if she is

just constrained to give all the objects away, then R1(1) = 0 (the last feasibility constraint binds), and the

proposition holds regardless the sign of the conditionally expected C(�).

Lastly, I assume that the criterion function is nonincreasing. This is analogous to the usual assumption

that the virtual valuation is nondecreasing in auction theory. Since C(1) = 0, if C(r) is nonincreasing in r

for all r 2 [1=2; 1], then E(C(r̂) jr̂ � r ) is positive for every r � 1=2. The following corollary holds.

Corollary 1 Assume that any optimal mechanism satis�es R2(1=2) = 0. Let C(r) be nonincreasing in every

r 2 [1=2; 1]. Then there exists an optimal mechanism q� such that R1(r) = 0 for any r 2 [1=2; 1]. Thus,

Q�1(r) = [1�	(r)]n�1, 8r 2 [1=2; 1].

20 In ex-post probabilities, the planner maximizes
R 1
1=2

:::
R 1
1=2

Pn
i=1 q

i
1(r

1; :::; rn)C(ri)
Qn
i=1 d	(r

i) subject
to
Pn
i=1 q

i
1(r

1; :::; rn) � 1 for any (r1; :::; rn) 2 [1=2; 1]n and to Q1(�) being nonincreasing.
21De�ne K(1��) � C[	�1(�)]. K(�) has [0; 1=2] as its domain. Take ~K(p) as the derivative of the convex
hull of the integral of K(�) from 0 to p. We obtain the ironed criterion function as ~C(r) = ~K(1 � 	(r)).
We optimally assign object 1 to the agent with the highest (positive) value of the ironed criterion function,
breaking ties evenly.
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The corollary can be understood as follows: if all agents prefer the same good and the criterion function

is nonincreasing, the optimal mechanism assigns the non-preferred good to the agent with more moderate

preferences. In the examples below, both the uniform and the exponential valuation distributions meet

this condition on C(�). This corollary is useful when comparing the optimal mechanism to the ranking

mechanism.

3 Implementation and comparison with respect to the Ranking Mechanism

In what follows, I assume that the criterion function is nonincreasing. The purpose of this subsection is

to �nd mechanisms (that is, ex-post probability functions q(�)) that implement the interim probabilities of

the optimal mechanism. To start with, I treat the case in which there are two agents. Below I de�ne two

mechanisms that achieve the desired results.

De�nition 2 The auction mechanism (with two agents). Each agent i reports her preferred object

hi 2 f1; 2g and a bid bi 2 [0; 1] to the planner in a sealed envelope. If the agents report to prefer di¤erent

objects, each agent obtains her reportedly preferred object. If both agents reportedly prefer the same object

h, then: 1) an endowment probability 1/2 of obtaining that object is given to each agent, and 2) the other

object (3 � h) is auctioned o¤ and given to the agent with the highest bid, who pays her bid (up to 1/2) in

probability units of obtaining object h, and this payment is transferred to the agent who loses the auction

(who does not pay her bid).

De�nition 3 The market mechanism (with two agents). For each object h 2 f1; 2g, each agent is

given an equal endowment probability 1/2 of obtaining that object. Each agent i announces a price for object

2, pi 2 [0; 1]. Announcements are simultaneous. If pi < 1=2 � p�i, the planner sets equilibrium prices p�1

and p�2 for objects 1 and 2 respectively, such that p
�
1 = p�2 = 1=2. Agent i sells her endowment (in probability

units) of object 2 and buys agent �i�s endowment of object 1. Agent �i buys and sells oppositely so as to

clear the market. If 1=2 � pi < p�i, the planner sets equilibrium prices p�2 = pi and p�1 = 1 � pi. Agent i

sells 1�pi
2pi from her endowment (in probability units) of object 2 and buys agent �i�s endowment of object 1.

Agent �i buys and sells so as to clear the market. The procedure is symmetric when both announced prices

lie below 1/2: given 1=2 > pi > p�i, the planner sets equilibrium prices p�2 = pi and p�1 = 1� pi, and agent i

sells pi

2(1�pi) from her endowment (in probability units) of object 1 and buys agent �i�s endowment of object

2. Finally, if pi = p�i, the equilibrium prices are set as p�2 = pi and p�1 = 1� pi, and agents do not trade.

It is easy to check that both mechanisms have equilibria yielding identical outcomes. In the Appendix, I

derive the symmetric equilibrium bid function B(�) in the auction. In the market mechanism, agents do not

behave competitively, that is, announced prices P (�) may not re�ect real preference parameters (P (r) 6= r). I
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explain in the Appendix that in a symmetric equilibrium, the price announcement function P (�) for r > 1=2

follows the formula 1�P (r)
P (r) = EN

�
max
i2f1;2g

1�r̂i
r̂i

���� 1�rr > max
i2f1;2g

1�r̂i
r̂i

�
. The symmetric equilibrium bid function

B(�) in the auction game is equivalent to 1�P (�)
2P (�) (observe that the equilibrium bid does not exceed 1=2).22

Observe that when both agents prefer the same object, both equilibria imply that the non-preferred object

is received by the agent with more moderate preferences. E¢ ciency is reached in that sense even though

agents behave strategically.

Now, let us say that a mechanism (symmetric Bayesian Nash) implements the optimal mechanism if its

induced game has a symmetric Bayesian Nash equilibrium in which, after being played, each agent�s interim

expected allocation equals the interim allocation probabilities of the optimal mechanism.

Proposition 3 Let n = 2 with regular F and nonincreasing criterion function. Then both the auction

mechanism and the market mechanism (symmetric Bayesian Nash) implement the optimal mechanism.

Proof. See the Appendix.

The optimal mechanism di¤ers from the Ranking Mechanism when both agents prefer the same object.

Two examples illustrate the welfare gains that can be achieved when the ranking mechanism is replaced by

the auction (or the market) mechanism. In the �rst example shown here, the marginal distribution of the

valuation for each object is uniform. In the second example, each object valuation is drawn from the same

exponential distribution. Both examples in this subsection satisfy the requirements of propositions 1 and 2

(and its corollary).

Example 1 The uniform distribution: ~F (v) = v, v 2 [0; 1]. For r � 1=2, the density of r is  (r) = 1
2r2 .

Normalize the per agent ex-ante expected utility in the �rst best (perfect information) case to 1. By even

randomization, the no-information case, each agent obtains an ex-ante expected payo¤ that is normalized to

0. Under this normalization, the optimal mechanism yields a per agent ex-ante expected payo¤ of 2=3. The

ranking mechanism obtains 1=2.

Example 2 The exponential distribution: ~F (v) = 1 � e��v, v 2 [0;1), � > 0. In this case, r is

distributed as a uniform U [0; 1], with density  (r) = 1. Under the normalization of Example 1, the optimal

mechanism gives a welfare of 2(1� log 2) ' :6137. The ranking mechanism yields 1=2 instead.

Next, I consider the cases where n > 2, in which implementation is more complex. Consider for instance

a generalization of the auction mechanism depicted above. If not all the agents declare to prefer the same

object, each object is randomly assigned to an agent who reports preferring it. If all agents declare to prefer

the same object h, then: 1) an endowment probability 1=n of obtaining that object is given to each agent,

22When r < 1=2, then P (r)
1�P (r) = EN ( max

i2f1;2g
~ri

1�~ri
��r > ~r1; r > ~r2 ), and B(r) = P (r)

2[1�P (r)] .
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and 2) the other object 3�h is auctioned o¤ and given to the agent with the highest (sealed) bid, who pays

her bid in probability units of obtaining object h, and this payment is evenly transferred to the agents who

lose the auction (they do not pay their bids).

Ignoring the endowment constraint, the symmetric equilibrium of this �rst-price auction gives a bid

function B(r) = n�1
n EN

�
max
i2N

1�r̂i
r̂i

���� 1�rr > max
i2N

1�r̂i
r̂i

�
(when everyone prefers object 2).23 However, when

n > 2, the unconstrained equilibrium bid may exceed the endowment probability 1=n.24 This is intuitive

since the equilibrium bids become more aggressive when each agent faces more opponents, while the budget

limit shrinks as the number of agents increases. With this constraint, the equilibrium bid function is capped

by the endowment, and hence the auction may not yield an e¢ cient allocation of the non-preferred object.

A similar problem occurs with a generalization of the market mechanism.

In a sense, this feasibility problem occurs due to insu¢ ciently developed insurance markets. An agent

could be interested in buying a security that gives her extra endowment in states of the world where an

auction is to be played, in exchange of lower endowments in other states of the world. This way she could

optimally bid ignoring the endowment constraints, leading to an e¢ cient assignment of the non-preferred

object. The mechanism I present here solves this insu¢ ciency problem.25

De�nition 4 The insured auction mechanism (for more than two agents) . Each agent i reports

her preferred object hi 2 f1; 2g and a bid bi 2 [0; 1] to the planner in a sealed envelope. Let B(r) =
n�1
n EN

�
max
i2N

1�r̂i
r̂i

���� 1�rr > max
i2N

1�r̂i
r̂i

�
for r � 1=2 and B(r) = n�1

n � EN
�
max
i2N

r̂i

1�r̂i

���� r
1�r > maxi2N

r̂i

1�r̂i

�
for

r < 1=2. For any bid b, let V (b) = maxf0; b� 1=ng. The allocation proceeds as follows:

1) If all agents declare to prefer the same object, each agent obtains an initial endowment (in probability

units) of 1=n of that object, and an auction gives the non-preferred object to the agent with the highest bid.

The winner i pays bi�V (bi) in probability units of the most-preferred object, which is evenly split among the

losers of the auction (who do not pay their bids).

2) If all but one (call her j) agents declare to prefer the same object h, an initial endowment 1
n�1 of that

object is given to these agents. Then the agent i with the highest bid among them pays 1�	(B�1(bi))
(n�1)=2 � V (bi)

in probability units of that object h, and this payment is evenly split among the other agents who claimed to

prefer that object. The remaining agent j obtains the remaining object 3� h.

3) If neither the conditions in 1) nor 2) are met, each object is evenly split (in probability units) among

those agents who declare to prefer it.

23This result can be found for instance in McAfee and McMillan (1992). I also derive it in the Appendix.

24Any e¢ cient auction format would yield the same problem as long as n�1n EN

�
max

i2f1;:::;ng
1�r̂i
r̂i

�
> 1

n .
25This is one possible solution. Alternatively, the market mechanism could be appropriately extended to
include securities that led markets to the desired outcome. The approach I take in the paper is useful in
that it obtains a mechanism that can be easily compared to the Ranking Mechanism.
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The function V (bi) characterizes a security (or a voucher) an agent cashes in states of the world in which

an auction is run and she becomes the winner. The price for that security is characterized in point 2) of the

previous de�nition: there are states of the word in which this agent sacri�ces part of its endowment with no

compensation. To calculate this price the planner needs to know the equilibrium bid function in an auction

with unconstrained budgets. Notwithstanding this, the aforementioned mechanism is feasible26 and achieves

incentive e¢ cient allocations. It is shown in the Appendix that this insurance policy has zero e¤ect on any

agent�s ex-ante allocated probabilities while allowing for e¢ cient auctions.

Proposition 4 For n > 2 with regular F and a nonincreasing criterion function, the insured auction mech-

anism (symmetric Bayesian Nash) implements the optimal mechanism.

Proof. See the Appendix.

Apart from the insurance policy depicted above, this optimal mechanism di¤ers from the Ranking Mech-

anism only in the two cases where all agents prefer the same object. This happens with probability 1
2n�1 .

Thus the welfare di¤erence between the optimal mechanism and the ranking mechanism tends to vanish

when the number of agents is large.

Corollary 2 In a regular environment with a nonincreasing criterion function, the welfare di¤erence between

the optimal mechanism and the ranking mechanism is of the order of 1
2n�1 and collapses to 0 as n!1.

With many agents, one could simply use the ranking mechanism without being afraid of big e¢ ciency

losses. With few agents, the use of the optimal mechanism is clearly justi�ed. In the two-agent case, the

optimal mechanism is implemented via intuitive and rather simple mechanisms that do not require the

planner to know the distribution of preferences.

4 The two-school random assignment problem

One of the features of the problem so far analyzed is that it poses no restrictions on the number of objects

that will be allocated to each agent. In particular, it may be the case that both objects are allocated to the

same agent, or that some object is not allocated to any agent. While this is �ne in many settings, such as

collusion mechanisms, in some cases this assumption is inappropriate. A paradigmatic case, from which this

Section takes its name, consists of the assignment of children to public schools. Naturally, no child can be

allocated to more than one school, and all children must be assigned.

The two-school random assignment problem is introduced as follows. There is a number n of children,

and each of them is to be assigned to exactly one of two schools. School 1 has n1 2 f1; :::; n� 1g slots to be
26Since the maximum bid is 1, the maximum payment in point 2) of the de�nition is 1=n, while the initial
endowment in that case is 1

n�1 .
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ful�lled, and school 2 has n2 = n� n1 vacancies. It is assumed that schools�preferences will not play a role

here, so this is a one-sided matching problem. Child i parents�preferences over schools are represented by

valuations vi1 and v
i
2, as in the original game, and these are private information. Valuations are i.i.d. among

parents, and marginal distributions are identical for the two schools. Parents are indi¤erent among di¤erent

slots in the same school.

The mechanism designer asks for information about parents�preferences, and allocates assignment prob-

abilities qih(�), 8i 2 f1; :::; ng, 8h 2 f1; 2g, as a function of revealed information. qih is the probability that

children i is allocated a slot in school h. The preliminary results of Section 2 still apply, so without loss

of generality qih will depend only on the vector (r
1; :::; rn), where ri is de�ned as in Section 2. Qih(r

i), the

reduced-form probability, is also de�ned as in Section 2, for any i and h.

The constraint that each child is assigned to exactly one school implies that for any (r1; :::; rn) 2 [0; 1]n

the matrix q(r1; :::; rn) � [qih(r
1; :::; rn)]i;h satis�es

P
h q

i
h(r

1; :::; rn) = 1 for any i. A consequence of this

property of the random assignment is that for any i and ri, it must hold that Qi2(r
i) = 1�Qi1(ri), a constraint

that was not present in the previous sections. Child i parents� interim utility is therefore U i(ri; Bi) �

Bi[Qi1(r
i)(1�ri)+Qi2(ri)ri] = Bi[ri+Qi1(r

i)(1�2ri)]. Since it only depends on one reduced form probability,

the next result follows immediately.

Proposition 5 In the two-school random assignment problem, BIC is equivalent to the following properties

for any i 2 f1; :::; ng and any pair (r; ~r) 2 [0; 1]2, r � ~r: 1) if sign(r � 1=2) = sign(~r � 1=2), then

Qi(r) = Qi(~r), and 2) if r � 1=2 � ~r, then Qi1(r) � Qi1(~r) (and therefore Q
i
2(r) � Qi2(~r)).

Proof. After taking Qi2(r
i) = 1 �Qi1(r

i) into account, the BIC constraints can be restated as: for any

i 2 f1; :::; ng and any pair (r; ~r) 2 [0; 1]2, where without loss of generality r � ~r, we have Qi1(r)(1 � 2r) �

Qi1(~r)(1 � 2r) and Qi1(r)(1 � 2~r) � Qi1(~r)(1 � 2~r). It is easy to check that this is equivalent to the stated

properties.

The main consequence is apparent. In the problem under analysis, if a mechanism is Bayesian incentive

compatible, then it can only elicit useful information on the agents�ordinal preferences.

Corollary 3 The Ranking Mechanism (in a version that ensures exactly one slot per child) solves the two-

school random assignment problem in environments characterized by Private Values and identical marginals.

The way the ranking mechanism is implemented here is as follows. Let the number of parents27 claiming

to prefer school 1 be denoted by n�1. If n
�
1 = n1, then there is a perfect match between preferences and slots.

If n�1 > n1, then all children whose parents claim to prefer school 2 are ensured a placement in that school.

The remaining slots are allocated among the unassigned children by even randomization. If n�1 < n1, then

the ones that prefer school 1 are the ones that are ensured a place in that school.
27Each child�s parents count as one individual.
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The corollary stems from this fact: allocating each slot at a given school to an agent that prefers that

school whenever possible generates more welfare than allocating otherwise. And this is precisely what this

version of the ranking mechanism does.With two schools, several school assignment mechanisms that are

studied in the school choice literature (Deferred Acceptance, the Boston Mechanism, the Pseudomarket)

yield the same random allocation as the ranking mechanism does if the schools have no priorities across the

students.

5 Extensions

The results obtained through the present paper could be extended at least in two dimensions, namely a

higher number of objects and ex-ante non-identical objects. A brief discussion on what could happen when

we relax the assumptions I take in this paper is provided in this Section, in the understanding that a more

general solution is still pending. I simply suggest ideas that give some clues for future research.

When the number of objects is increased, the complexity burden of the problem at hand becomes hardly

manageable. As previously mentioned, the literature on auctions has not yet made de�nite progress in the

design of revenue-maximizing multi-object auctions. Likewise, in a non-transfer allocation problem with

more than two objects, even if the numeraire good is correctly chosen, it is not clear how this numeraire

is optimally used to purchase probability units of the other goods. It is interesting though to explore sub-

optimal but simple mechanisms that improve over mechanisms that simply use information on the agents�

ordinal preferences. In that sense, the Boston Mechanism obtains an interesting improvement over Deferred

Acceptance (a mechanism that elicits information on ordinal preferences only) in school choice problems

(Abdulkadiro¼glu, Che and Yasuda, 2009). Policymakers�options are being enriched by these recent contri-

butions.

Likewise one could consider allocating objects that may not be ex-ante identical. It should be stressed

that the assumption of ex-ante identical objects highlights the role of information transmission and trade-o¤

rules in allocation mechanisms. Consider for instance the extreme opposite case in which one of the objects

(the popular object) is always preferred to the other. Assuming other conditions (regularity, monotone

criterion function), optimally the planner should split the popular object into equal allocation probabilities

and auction the "unpopular" object o¤ using the popular object as numeraire. This auction is e¢ cient

with two agents as we have seen in previous sections. However, given the budget constraint, e¢ ciency

is not guaranteed when the number of agents exceeds two. The planner�s ability to avoid the budgetary

problems is severely limited in this setup. When objects are ex-ante identical, the planner could impose an

insurance scheme based on states of the world where not all agents prefer the same object. This option is

not available when one of the objects is always preferred by everyone. Consequently, the e¢ cient allocation

of the non-preferred object may not be feasible.
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Other assumptions such as Independent Private Valuations (although valuations were allowed to be

correlated between objects) and no synergies have been made here. The e¤ects of relaxing these assumptions

are still unknown. The introduction of synergies substantially complicates the allocation problem. If the

synergy value is proportional to the previously de�ned bundle valuation, all the relevant information used

in the optimal mechanism would still consist of relative preference parameters. No more results could be

stated at this moment. Further research will address all these additional matters.

6 Conclusions

Economists have extensively analyzed the problem of allocating several indivisible objects to several agents,

under the constraint that no monetary transfers can be made. The ranking mechanism, where the allocation

of each object is solely a function of the agents�ordinal preferences, has been suggested as a satisfactory

solution, due to its simplicity and e¢ ciency properties.

Mechanisms eliciting information on cardinal preferences are nevertheless preferable. When Bayesian

(or interim) incentive compatible mechanisms are analyzed, obtaining information on agents�marginal rates

of substitution between objects becomes valuable in determining the allocation decision. Bayesian cardinal

mechanisms obtain better random allocations than ordinal mechanisms. The improvement is relatively more

important the smaller is the number of objects to be allocated and the smaller is the number of agents that

participate.

Solving for the ex-ante utilitarian-optimal cardinal mechanism (the optimal mechanism in this paper)

is a cumbersome task due to the multidimensionality of types. This paper has analyzed the two-object,

n-symmetric-agent, Independent-Private-Valuation case, and has provided a solution method. The main

idea of the solution is rather simple: one of the objects can be used as numeraire (in probability units) in

order to purchase probability units of the other object. Implementation has been characterized for a wide set

of environments. With two agents, both a market mechanism and an auction mechanism su¢ ce. With more

agents, incomplete insurance markets deter the previous mechanisms from attaining e¢ cient allocations in

all cases. The agent who should obtain one of the objects under the optimal mechanism may not have enough

of the numeraire good to purchase the former object. The planner must complete the auction mechanism

with an insurance policy that guarantees feasibility of the ex-ante e¢ cient allocation.

I construct examples in order to compare the optimal mechanism to the ranking mechanism in terms

of welfare. Let us normalize the welfare obtained under even randomization of both objects to 0, and

the welfare obtained by a perfectly informed planner to 1. Under this normalization, with two agents and

uniformly distributed valuations, the ranking mechanism obtains a welfare of 1/2 and the optimal mechanism

2/3. The examples show that with few agents the optimal mechanism signi�cantly di¤ers from the ranking

mechanism. As the number of agents grow large, the di¤erence between the optimal mechanism and the
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ranking mechanism diminishes and �nally vanishes in the limit.

Interestingly, when the problem is additionally constrained to ensure one (and only one) object per

agent, incentive compatibility precludes any use of cardinal information, in the two-object case. The ranking

mechanism turns out to be an optimal mechanism.

There is further interesting work to be done in this and related topics. The optimal mechanism problem

shall be extended to the allocation of more than two objects, and to the allocation of ex-ante non-identical

objects, being one of them more popular than the other. It is also interesting to further explore mechanisms

in which the planner does not need information about the priors.
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7 Appendix

Proof. Lemma 2.

1) and 2): divide (IC) by r (notice that the inequalities still hold) and proceed to a standard manipulation

of these new constraints, following for instance the technique in Mas-Colell, Whinston and Green (1995, 888-

889, proof of proposition 23.D.2).

3): Consider ~r > r > 1=2. Dividing (IC) by r, we have Q2(~r) � Q2(r) � 1�r
r [Q1(r) � Q1(~r)]. Adding

Q1(~r)�Q1(r) to both sides, I obtain [Q1(~r)+Q2(~r)]� [Q1(r)+Q2(r)] � 1�2r
r [Q1(r)�Q1(~r)] � 0, with the

last inequality being strict when Q1(r) 6= Q1(~r) because of point 2) in this lemma.

4): De�ne, for any object h and for any p 2 [1=2; 1], R̂h(p) � Rh[	
�1(p)], and Q̂h(p) � Qh[	

�1(p)].

Given 3), it is easy to see that R̂2(p)� R̂1(p) = (1� p)n � pn + n
R p
1=2
[Q̂1(�) + Q̂2(�)]d� is strictly concave

on [1=2; 1]. Thus R2(�) � R1(�) is �rst strictly increasing up to some point ~r 2 (1=2; 1] and then strictly

decreasing for values r > ~r. We know R2(1=2) = R1(1=2) and R2(1) = 0 � R1(1) by construction of these

functions. Thus R2(�)�R1(�) must have a unique point r0 2 (~r; 1] such that R2(r)�R1(r) > 0 if 1=2 < r < r0

and R2(r)�R1(r) < 0 if r > r0:

Proof. Proposition 1.

Fix a feasible, Bayesian incentive compatible (BIC) reduced-form (direct) mechanism Q that satis�es

R1(1=2) = R2(1=2) > 0. The proof consists of the construction of an alternative feasible, BIC reduced-form

(direct) mechanism �Q that obtains a higher ex-ante expected welfare thanQ. As we will see, the new reduced-

form allocation �Q is welfare-improving with respect to Q because �Q2(�) � Q2(�) (with strict inequality for

a positive-measured subset of the domain) while
R 1
1=2

 (x)[ �Q1(x) + �Q2(x)]dx �
R 1
1=2

 (x)[Q1(x) +Q2(x)]dx.
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Given the regularity condition, the welfare gain induced by raising Q2 is higher than the welfare loss induced

by the reduction of Q1.

Along the proof I use the following notation. Associated with Q there are constraint functions R1

and R2 and a utility function u(r) � rQ2(r) + (1 � r)Q1(r). Associated with �Q there are �R1, �R2 and

�u(r) � r �Q2(r)+(1�r) �Q1(r). For any function g(�), I denote g(x+) = lim
y>x;y!x

g(y) and g(x�) = lim
y<x;y!x

g(y).

" is a strictly positive number that is arbitrarily close to zero. � is a number that is lower than and arbitrarily

close to 1.

I de�ne some parameters that will be used along the proof. First denote H1 � fr 2 [1=2; 1] jR1(r) = 0g

and H2 � fr 2 [1=2; 1] jR2(r) = 0g. If R1(�) > 0 in the whole domain, we could de�ne a feasible alternative

reduced-form allocation �Q satisfying �Q2(�) = Q2(�) and �Q1(�) = Q1(�) + ", obtaining higher ex-ante welfare

while maintaining BIC, and we would be done. Thus from now on I assume that H1 is not empty. H2 is not

empty either since by construction R2(1) = 0. I de�ne h1 � infH1(> 1=2), ĥ1 � supH1 and h2 � infH2.

Given point 4) in lemma 2, and since both R1(�) and R2(�) are continuous, there exists a unique point

r0 2 (1=2; 1] such that R1(r0) = R2(r
0); R1(r) < R2(r) for every r < r0 , and R1(r) > R2(r) for every r > r0.

Consequently, ĥ1 � r0 � h2.

There are other useful parameters that I de�ne here. h3 (if it exists) is a point in the interval [ĥ1; h2]

where Q(�) is discontinuous. ĥ3 is a number higher than and arbitrarily close to ĥ1. h4 is the in�mum of the

set fx 2 (ĥ3; h2) : Q2(h4) = �Q2(ĥ3)g if such a set exists. The parameters h1; ĥ1; h2; h3; ĥ3; h4 will serve to

�nd the aforementioned alternative reduced-form allocation �Q.

Preliminarily, I deal with the simple case in which Q is constant over the whole domain [1=2; 1]. Since

H1 6= ?; we have Q1(�) > 0 (otherwise, for any r in the domain, R1(r) = R2(1=2)+(1=2)
n� [1�	(r)]n > 0).

It is also clear that Q2(�) < 1 in order to preserve feasibility. I can then construct an alternative allocation
�Q such that �Q2(�) = Q2(�) + "; �Q1(�) = Q1(�) � ". The new reduced-form allocation is feasible, incentive

compatible and welfare-improving. The net welfare gain is
R 1
1=2

 (r)" [E[v2 jr ]� E[v1 jr ]] dr, which is strictly

positive, and we are done. So from now on, I will assume that Q is not constant over the whole domain.

The remaining scenarios are divided into four cases. Case 1 contains with scenarios where h2 = 1 whereas

the other cases assume h2 < 1. In case 2, there is a discontinuity point h3 as previously de�ned. In the

remaining cases, such a number h3 does not exist. In case 3, ĥ1 < h2, while in case 4, ĥ1 = h2. I extensively

analyze case 1 in detail. The remaining cases are treated more concisely insofar as many of its elements are

analogous to the ones of case 1.

Case 1: h2 = 1.

Construction of �Q

(note: if h1 = 1, in what follows replace h
+
1 with 1)

1) For r 2 [1=2; h1]; �Q1(r) � Q1(h
+
1 ) = �[Q1(r) � Q1(h

+
1 )], �Q2(h1) = Q2(h

+
1 ) + " (" is set to obtain
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�R1(h1) = R1(h1)) and �Q2(h1)� �Q2(r) = �
�
Q2(h

+
1 )�Q2(r)

�
2) For r 2 (h1; 1] (if such an interval is not empty), �Q1(r) = Q1(r

�) and �Q2(r) = Q2(r
�) + "

Feasibility

Notice that R1(1) � 0 and the fact that Q1(�)+Q2(�) is nonincreasing (strictly decreasing at some point)

implies that Q1(1) + Q2(1) < 2=n. Therefore Q2(1) < 1 and the constructed �Q2�s are proper probabilities

here as well as in the remaining cases. �R1(h1) = 0 and since �Q1(r) = Q1(r
�) for r 2 (h1; 1], it follows that

�R1(r) � 0 for r 2 (h1; 1]. Since " is arbitrarily small and � is arbitrarily close to 1, and since R1(r) > 0 for

r 2 [1=2; h1] and R2(r) > 0 for r 2 [1=2; 1), we also obtain �R1(r) � 0 for r 2 [1=2; h1] and �R2(r) � 0 for

r 2 [1=2; 1].

Incentive compatibility

By BIC, we have, for any 1=2 � r < h1, u(r)=r � u(h1)=h1 =
R h1
r

Q1(x)
x2 dx. I show that the same

equation holds regarding �u(�) and �Q(�). By construction of �Q(�), we have �Q1(r)
1�r
r � Q1(h

+
1 )

1�h1
h1

=

1�r
r �[Q1(r) � Q1(h

+
1 )] + Q1(h

+
1 )
�
1�r
r � 1�h1

h1

�
and �Q2(h1) � �Q2(r) = �

�
Q2(h

+
1 )�Q2(r)

�
. Substracting

the second equation from the �rst, I obtain:

�u(r)=r � �u(h1)=h1 = � [u(r)=r � u(h1)=h1] + (1� �)Q1(h+1 )
�
1� r
r

� 1� h1
h1

�
=

Z h1

r

�Q1(x)

x2
dx+ (1� �)Q1(h+1 )

�
1� r
r

� 1� h1
h1

�
=

Z h1

r

�Q1(x)� (1� �)Q1(h+1 )
x2

dx+ (1� �)Q1(h+1 )
�
1� r
r

� 1� h1
h1

�
=

Z h1

r

�Q1(x)

x2
dx

For any other value r � h1, the function �Q2(�) is just a swifting-up of Q2(�), thus it is easy to see that

the condition �u(h1)=h1 � �u(r)=r =
R r
h1

�Q1(x)
x2 dx holds. It is consequently clear that for any pair (r; ~r) the

equation �u(~r)=~r� �u(r)=r =
R r
~r

�Q1(x)
x2 dx holds, while �Q2(�) is nondecreasing (or �Q1(�) is nonincreasing) in the

whole domain. Invoking lemma 3, �Q(�) preserves BIC.

Welfare improvement

I show that " is a strictly positive number as required. As stated, " is set to keep �R1(h1) = R1(h1), that

is,

1� [1�	(h1)]n � n
Z 1

h1

 (x) �Q2(x)dx� n
Z h1

1=2

 (x)[ �Q1(x) + �Q2(x)]dx

= 1� [1�	(h1)]n � n
Z 1

h1

 (x)Q2(x)dx� n
Z h1

1=2

 (x)[Q1(x) +Q2(x)]dx
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leading to

1� [1�	(h1)]n � n
Z 1

h1

 (x)Q2(x)dx� n[Q1(h+1 ) +Q2(h+1 )][	(h1)� 1=2]

��n
Z h1

1=2

 (x)[Q1(x)�Q1(h+1 ) +Q2(x)�Q2(h+1 )]dx

�n"=2

= 1� [1�	(h1)]n � n
Z 1

h1

 (x)Q2(x)dx� n[Q1(h+1 ) +Q2(h+1 )][	(h1)� 1=2]

�n
Z h1

1=2

 (x)[Q1(x)�Q1(h+1 ) +Q2(x)�Q2(h+1 )]dx

Since by BIC Q1(�) + Q2(�) is nonincreasing (strictly decreasing when Q(�) varies), we obtain Q1(x) �

Q1(h
+
1 ) + Q2(x) � Q2(h

+
1 ) � 0 for any x � h1, strictly for a positive-measured set of x�s. Should Q(�) be

constant along the interval between 1/2 and h1, R1(h1) = 0 implies 0 > R01(h
�
1 ) = n[[1�	(h1)]n�1�Q1(h�1 )]

so Q1(�) must jump down at h1 (since feasibility requires R01(h+1 ) = n[[1 � 	(h1)]n�1 � Q1(h
+
1 )] � 0), and

then Q1(x) � Q1(h
+
1 ) + Q2(x) � Q2(h

+
1 ) > 0 for any x � h1. All the integrals in the equation above take

then strictly positive value, thus " > 0 as required. " is arbitrarily small given that � is arbitrarily close to

1.

Given " > 0, for any r � 1=2, we have �Q2(r) � Q2(r) (strictly for a positive-measured subset of the do-

main). Since �R1(h1) = R1(h1), it follows that
R 1
1=2

�
�Q2(x)�Q2(x)

�
 (x)dx =

R h1
1=2

�
Q1(x)� �Q1(x)

�
 (x)dx.

The regularity condition implies thatZ 1

1=2

�
�Q2(x)�Q2(x)

�
E (v2 jx ) (x)dx >

Z 1

1=2

�
Q1(x)� �Q1(x)

�
E (v1 jx ) (x)dx

so that �Q induces a net ex-ante welfare gain with respect to Q.

Case 2: h2 < 1; and there is h3 2 [ĥ1; h2] such that Q(�) is discontinuous at h3.

Construction of �Q

1) For r 2 [1=2; h1]; �Q1(r) � Q1(h
+
1 ) = �[Q1(r) � Q1(h

+
1 )], �Q2(h1) = Q2(h

+
1 ) + " (" is set to obtain

�R1(h1) = R1(h1)) and �Q2(h1)� �Q2(r) = �
�
Q2(h

+
1 )�Q2(r)

�
2) For r 2 (h1; h3] (if such an interval is not empty), �Q1(r) = Q1(r

�) and �Q2(r) = Q2(r
�) + "

3) For r 2 (h3; 1], �Q1(r) = Q1(r
�) + h3

1�h3 ", and
�Q2(r) = Q2(r

�).

Feasibility

The only additional issue that is worth to mention here, with respect to case 1, is that although �Q1(r) >

Q1(r
�) for all r 2 (h3; 1], this does not violate feasibility since " is su¢ ciently small and R1(r) > 0 for all

r 2 (ĥ1; 1]:

Incentive compatibility
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It works as in case 1 once again. It is just necessary to additionally consider BIC around h3. That requires

�u(�) to be continuous at h3. Since �u(h�3 ) = h3[Q2(h
�
3 ) + "] + (1� h3)Q1(h�3 ) and �u(h+3 ) = h3Q2(h

�
3 ) + (1�

h3)
h
Q1(h

�
3 ) +

h3
1�h3 "

i
, it is clear that �u(h�3 ) = �u(h

+
3 ) = �u(h3).

Welfare improvement

Analogously to case 1, it is easy to check that " > 0 as required. As in case 1, since �R1(h1) = R1(h1),

and given the regularity condition, the welfare gain given by the increase in Q2 is higher than the welfare

loss induced by the decrease in Q1. Moreover, Q1 is increased in the interval (h3; 1].

Case 3: ĥ1 < h2 < 1, and there is no h3 2 [ĥ1; h2] such that Q(�) is discontinuous at h3.

Construction of �Q

1) For r 2 [1=2; h1]; �Q1(r) � Q1(h
+
1 ) = �[Q1(r) � Q1(h

+
1 )], �Q2(h1) = Q2(h

+
1 ) + " (" is set to obtain

�R1(h1) = R1(h1)) and �Q2(h1)� �Q2(r) = �
�
Q2(h

+
1 )�Q2(r)

�
2) For r 2 (h1; ĥ3], �Q1(r) = Q1(r

�) and �Q2(r) = Q2(r
�) + "

3) For r 2 (ĥ3; h4], �Q(r) = �Q(ĥ3)

4) For r 2 (h4; 1], �Q2(r) = Q2(r) and �Q1(r)�Q1(r) = �Q1(h4)�Q1(h4)

Feasibility

First of all, given that ĥ3 is su¢ ciently close to ĥ1, h4 exists because Q2(�) cannot be constant around h2
(sinceR2(h2) = 0 andR2 is di¤erentiable for r lower than and close to h2, withR02(r) = �n

�
	(r)n�1 �Q2(r)

�
,

R02(r) � 0 = R02(h2) implies Q2(r) < Q2(h2)).

Being " small enough and ĥ3 is su¢ ciently close to ĥ1, the di¤erence �Q1(r) � Q1(r) for r 2 (h4; 1] is

also small enough to preserve �R1(�) � 0 along the interval [ĥ3; 1] (where R1 is strictly positive). Keeping

�Q1(r) = Q1(r
�) in the short interval (ĥ1; ĥ3] serves to avoid feasibility problems derived from R1(ĥ1) = 0.

Incentive compatibility

That there are no incentive compatibility problems in the interval [1=2; h1] is again seen along the lines

of case 1. In the remaining intervals, the new allocation function �Q is either a swift of Q or a constant

function, with no discontinuities in the (ĥ1; h2) interval. Therefore BIC is preserved given that Q is Bayesian

incentive compatible.

Welfare improvement

The fact that " > 0 can be checked with minor changes with respect to case 1. By the regularity condition,

the welfare gain given by the increase in Q2 is higher than the welfare loss induced by the decrease in Q1.

Moreover, Q1 is increased in the interval (ĥ3; 1].

Case 4: ĥ1 = h2 < 1.

In this last case, I show that there must be a discontinuity in Q(�) at h2, leading to case 2. By the facts
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that R1(h2)�R2(h2) = 0 and Q1(�) +Q2(�) is nonincreasing one obtains

	(h1)
n � [1�	(h1)]n

= n

Z h2

1=2

 (x)[Q1(x) +Q2(x)]dx

� n[	(h2)� 1=2][Q1(h2) +Q2(h2)]

After de�ning M(x) � xn�[1�	(h2)]n
n[	(h2)�x] + 	(h2)

n�xn
n[	(h2)�x] , x 2 [1=2;	(h2)), I observe that Q1(h2) + Q2(h2) �

M(1=2). On the other hand, R2(h2) = 0 implies Q2(h
+
2 ) � 	(h2)n�1 (since R02(h+2 ) � 0) and R1(h2) = 0

implies Q1(h
�
2 ) � [1�	(h2)]n�1 (since R01(h�2 ) � 0). If Q were continuous at h2, we would have Q1(h2) +

Q2(h2) � [1 � 	(h2)]n�1 + 	(h2)n�1 = M(	(h2)
�). Since M(x) is strictly increasing in x 2 [1=2;	(h2)),

by contradiction Q is discontinuous at h2. This leads to case 2 as previously stated.

Proof. Derivation of equilibrium bid and price strategies B(�) and P (�) in Section 3.

I �rst derive the equilibrium bid function B(�) in the n�player auction depicted in Section 3. For a

v�type agent, where v = (v1; v2) is the vector of her valuations, de�ne m � v1=v2, her marginal rate of

substitution. Assume that all agents prefer object 2, that is, m 2 [0; 1]. Let G(�) be the distribution of

an agent�s m conditional on being in the [0; 1] interval, and g(�) be its associated density (let m̂ demote

m when considered as a random variable). In the rest of this derivation, agents�types will be su¢ ciently

characterized by the marginal rate of substitution. Given a supposedly strictly increasing and di¤erentiable

equilibrium bid function �(�), an m�type agent chooses her bid b (in probability units of obtaining object

2) in order to maximize her expected payo¤

�(m; b) = G(��1(b))n�1(m� b) + 1

n� 1

Z 1

��1(b)

�(�)dG(�)n�1

where the �rst component of this sum is the usual one in �rst-price auctions and the second component

comes from the fact that the winning bid is evenly split among the losers in case the agent does not win

the auction. By the envelope theorem we know that d�
dm = @�

@m = G(��1(b))n�1. By the symmetry of the

equilibrium, we know that b = �(m). Thus we have

�(m;�(m)) = �(0;�(0)) +

Z m

0

G(�)n�1d�

where �(0;�(0)) = 1
n�1

R 1
0
�(�)dG(�)n�1. I combine the two previously displayed equations to obtain

G(m)n�1m�
Z m

0

G(�)n�1d� = G(m)n�1�(m) +
1

n� 1

Z m

0

�(�)dG(�)n�1

which holds for every m 2 [0; 1]. I di¤erentiate the equation and I multiply it by (n� 1)G(m) obtaining

n� 1
n

mng(m)G(m)n�1 = ng(m)G(m)n�1�(m) +G(m)n�0(m)
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where the right hand side is equivalent to d[G(m)n�(m)]
dm . Integrating I solve for �(m):

�(m) =
n� 1
nG(m)n

Z m

0

�dG(�)n =
n� 1
n

EN

�
max
i2N

m̂i

����maxi2N
m̂i < m

�

B(r) equals �
�
1�r
r

�
, for any r � 1=2. An analogous derivation follows for the shape of B(�) when all

agents prefer object 1. Obviously, the same derivation applies when n = 2.

I derive P (�) for such a case in which we have two agents. I newly assume that both agents prefer the

same object, say object 2. I assume that P (�) is decreasing in r. Then, by the rules of the designed market,

the agent with the most moderate preference (say r) obtains the non-preferred object, in exchange of 1�P (r)2P (r)

in probability units of object 2. This payment is received by the agent who loses the non-preferred object.

Each agent�s strategy could be rede�ned in terms of �(r) � 1�P (�)
2P (�) , and it is easy to see that this game is

isomorphic with respect to the auction game for which I just derived the symmetric equilibrium. In the

symmetric equilibrium of the market game I obtain �(r) = B(r) for any r � 1=2.

Proof. Propositions 3 and 4.

For the purposes of this proof, consider the following uninsured auction mechanism. Each agent i reports

her preferred object hi 2 f1; 2g and a bid bi 2 [0; 1] to the planner in a sealed envelope. If not all the agents

declare to prefer the same object, each object is randomly assigned to an agent who reports that she prefers

it. If all agents declare to prefer the same object h, then: 1) an endowment probability 1=n of obtaining

that object is given to each agent, and 2) the other object 3� h is auctioned o¤ and given to the agent with

the highest (sealed) bid, who pays her bid in probability units of obtaining object h, and this payment is

evenly transferred to the agents who lose the auction (they do not pay their bids). In this uninsured auction

mechanism, we ignore the fact that the bids might be capped by the endowment, that is, negative allocation

probabilities for good h might occur.

The proof works as follows. I �rst show that this uninsured auction mechanism generates the same interim

allocation probabilities as the optimal mechanism. This is relatively easy given the Revenue Equivalence

Theorem. This would complete the proof of proposition 3 because the equilibrium bid never exceeds the

endowment 1=n when n = 2. The problem when n > 2 is that the uninsured auction mechanism may

violate the feasibility constraints (it may assign negative probabilities). I then show that the insured auction

mechanism depicted in Section 3, which is feasible, implements the same interim allocation probabilities as

the uninsured auction mechanism. This would complete the proof of proposition 4.

In both the insured and uninsured auction mechanism agents truthfully declare their ordinal preferences

as part of a symmetric equilibrium where the bid function meets B(r) = B(1� r) for any r. For any given

bid, an agent who deviates and lies about her ordinal preferences would obtain higher interim chances to

obtain the object she does not prefer and lower for the object she prefers.
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Ignoring the endowment constraint as assumed, the symmetric equilibrium bid strategy in the unin-

sured auction mechanism is B(r) = n�1
n EN

�
max
i2N

1�r̂i
r̂i

���� 1�rr > max
i2N

1�r̂i
r̂i

�
for r � 1=2 and B(r) = n�1

n EN�
max
i2N

r̂i

1�r̂i

���� r
1�r > maxi2N

r̂i

1�r̂i

�
for r < 1=2 (observe that B(r) = B(1 � r) for any r). This has been derived

in the previous proof. We focus on agents of type r � 1=2. In case all agents prefer object 2, and since

B(r) is strictly decreasing in r, object 1 is allocated for sure to the agent with the lowest preference intensity

(lowest r). And if some other agent prefers object 1 instead, the r�type agent has no chance to obtain

object 1. Therefore QUNAUC1 (r) = [1�	(r)]n�1, where the UNAUC superscript stands for the symmetric

equilibrium in the uninsured auction mechanism. When r = 1=2, this type�s bid is the winning bid with

probability 1 in case there is an auction. Hence this agent�s interim expected payment consists of her bid

B(1=2), thus QUNAUC2 (1=2) =
Pn�2

~n=0(1=2)
n�1�n�1

~n

�
1
~n+1 + (1=2)

n�1[1=n � B(1=2)]. The �rst componentPn�2
~n=0(1=2)

n�1�n�1
~n

�
1
~n+1 consider states of the world in which not all agents prefer object 2 (and object 2

is randomly assigned among those agents who prefer it). In the second element, (1=2)n�1 is the probability

that everyone else prefers object 2 (thus object 1 is auctioned o¤ and the agent with type r = 1=2 wins and

pays her bid).

Considering the optimal mechanism, the corollary of proposition 2 establishes Q�1(r) = [1 � 	(r)]n�1 =

QUNAUC1 (r); r 2 [1=2; 1], where the star superscript identi�es the optimal mechanism. This function is

di¤erentiable in the interior of the domain. Thus Q�2(�) is di¤erentiable almost everywhere, and by equation

(1) Q�02 (r) = � 1�r
r Q�01 (r) =

1�r
r (n� 1) (r)[1�	(r)]

n�2. I use the result in proposition 1, R2(1=2) = 0; to

calculate Q�2(1=2).

R2(1=2) = 1� (1=2)n � n
R 1
1=2

 (r)
h
Q�2(1=2) +

R r
1=2

1�x
x (n� 1) (x)[1�	(x)]n�2dx

i
dr = 0 gives

Q�2(1=2) =
1� (1=2)n

n=2
� (1=2)n�1n� 1

n

Z 1

1=2

1� r
r

n
 (r)

1=2

�
1�	(r)
1=2

�n�1
dr

=
1� (1=2)n

n=2
� (1=2)n�1n� 1

n
EN (max

i2N

1� ~ri
~ri

��1=2 < ~r1; :::; 1=2 < ~rn )

=

n�1X
~n=0

(1=2)n�1
�
n� 1
~n

�
1

~n+ 1
� (1=2)n�1B(1=2)

=
n�2X
~n=0

(1=2)n�1
�
n� 1
~n

�
1

~n+ 1
+ (1=2)n�1[1=n�B(1=2)] = QUNAUC2 (1=2)

Since Q�1(r) = QUNAUC1 (r); r 2 [1=2; 1] and Q�2(1=2) = QUNAUC2 (1=2), the revenue equivalence theorem

implies that Q�2(r) = QUNAUC2 (r); r 2 [1=2; 1]. A symmetric argument follows when r < 1=2. Thus the

uninsured auction mechanism implements the optimal mechanism provided it allocates positive probabilities.

The previous proof in the appendix showed that the market mechanism and the (uninsured) auction

mechanism where isomorphic when n = 2. And when n = 2, B(�) does never exceed the endowment 1=2 (i.e.
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the uninsured auction mechanism always provides feasible random allocations). All this proves proposition

3.

To continue with proposition 4, I only need to show that the insured auction mechanism implements

the same interim allocation probabilities as the uninsured auction mechanism. For r � 1=2 (a symmetric

argument would follow for r < 1=2), it is clear that both mechanisms implement the same interim probabilities

with respect to object 1, the non-preferred object. Yet the insurance policy in the insured auction mechanism

may alter the interim allocation probabilities of object 2, the preferred object, as compared to those of the

uninsured auction mechanism. I assume that the bid function B(�) is also a symmetric equilibrium bid

function in the insured auction mechanism. I check that under this assumption the interim probabilities for

object 2 are the same in both the insured and the uninsured auction mechanisms. Thus both mechanisms

implement the same interim probabilities in both objects, coinciding with the interim probabilities of the

optimal incentive-compatible mechanism. This also con�rms that the assumed bid function B(�) is also an

equilibrium bid function in the insured auction mechanism.

Let QINAUC2 (r) denote the interim allocation probability for object 2 to an r�type agent playing the

equilibrium bid strategy B(�) in the insured auction mechanism. The di¤erence QINAUC2 (r) �QUNAUC2 (r)

is the sum of four elements:

a) The voucher V (B(r)) received when object 1 is auctioned o¤ and the agent wins the object, an event

that happens with probability (1=2)n�1
h
1�	(r)
1=2

in�1
b) The payment 1�	(r)

(n�1)=2V (B(r)) made when all but one of the other agents prefer object 2 and r is the

lowest preference intensity among them, an event that happens with probability (n�1)(1=2)n�1
h
1�	(r)
1=2

in�2
c) The expected voucher that is not paid by the winner of the auction (di¤erent from the agent) when

all agents prefer object 2, (1=2)n�1
R r
1=2

V (B(x))
n�1 � (n� 1) (x)1=2

h
1�	(x)
1=2

in�2
dx

d) The expected voucher that another agent pays when there are n�1 agents preferring object 2, and this

agent has the lowest preference intensity, (n� 1)(1=2)n�1
R r
1=2

1�	(x)
(n�1)=2

V (B(x))
n�2 � (n� 2) (x)1=2

h
1�	(x)
1=2

in�3
dx

It is easy to see that a) and b) cancel each other, and c) and d) cancel each other. Therefore QINAUC2 (r) =

QUNAUC2 (r).
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